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Phonons in colloidal crystals
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PACS. 63.20.-e – Phonons in crystal lattices.
PACS. 82.70.Dd – Colloids.
PACS. 62.30.+d – Mechanical and elastic waves; vibrations.

Abstract. – The dispersion curves of the phonons propagating in polycrystalline suspensions
of hard-sphere colloids are measured by Brillouin scattering and calculated by band struc-
ture techniques. Acoustic-like and optical-like experimental phonon dispersion relations are
attributed to the interplay of the solvent matrix mode with the single-sphere vibration eigen-
modes in these lattice structures.

The propagation of acoustic waves through inhomogeneous media has long been a subject
of interest since the spatial modulation in density and elastic parameters can give rise to
fascinating rich behavior with practical relevance [1–3]. As more self-assembled mesoscopic
structures emerge, long-wavelength elastic excitations can be probed by non-invasive Bril-
louin spectroscopy with direct access to the desired reciprocal space, since the typical size of
an elementary cell is of the order of µm (in contrast to the conventional crystals of atomic
dimensions, the phonon spectrum of which is well documented [4]). Lattice dynamics as-
sociated with the overdamped longitudinal and transverse acoustic branch in the first and
second Brillouin zone [4] were recently studied in a single (volume fraction φ = 0.54) hard-
sphere [5] colloidal crystal and a dilute (φ = 0.003) charged stabilized colloidal crystal [6],
using quasi-elastic light scattering.

Employing inelastic light scattering, we present the first, to the best of our knowledge,
experimental results on the frequencies and the dispersion relations of phonons propagating
in two polycrystalline colloids consisting of: a) PMMA spheres of diameter d ≈ 605 nm and
φ ≈ 0.52 in an almost symmetric decalin/tetralin mixture and b) silica spheres of d ≈ 250 nm
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and volume fraction φ ≈ 0.62 in cyclohexane/decalin. Case b), in contrast to case a), involves
large mismatch in the elastic constants and the densities between the spheres and the host
medium [7]. We map out the observed phonon spectra (up to five modes) of these two colloidal
polycrystals and compare the experimental to the calculated dispersion relations. Distinct
differences between case a) and case b) appear, due to the hardness of the silica particles as
opposed to the softness of the PMMA spheres.

The phonon propagation in the colloidal crystals was monitored by Brillouin light scat-
tering spectroscopy in the GHz frequency range and for different qd values, between 0.97 and
21.8 approximately, where q = |qi − qf | = (4πn/λ) sin(θ/2) (qi and qf are, respectively, the
wave vector of the incident and the scattered light, λ (= 514.5 nm) is the wavelength of
the laser, n is the refractive index of the medium and θ is the scattering angle). Polarized
Brillouin spectra arising from thermal density fluctuations in the system were recorded [8] by
a six-pass tandem-Fabry-Perot interferometer, using two free spectral ranges (7.5 GHz and
30 GHz) for each spectrum (in order to achieve both high-resolution and broad frequency
range). In the homogeneous media that cannot support shear, e.g. the solvents, one Brillouin
doublet ±ω shifted about the Rayleigh line is observed due to the absorption or emission of
one longitudinal phonon with phase velocity cl = ω/q. The present polycrystalline systems
exhibit clear Bragg scattering; for PMMA it resembles that of fig. 1b in ref. [9]. Hence, the
static structure factor peaks at q∗ = 0.0113 nm−1 for the PMMA and at q∗ = 0.029 nm−1 for
the silica colloidal crystals. The size of the grains, as estimated from the width of these first-
order peaks, is about 9d for PMMA and 15d for silica. The adequate orientational average
of the phonon spectrum was proven by examining recorded Brillouin spectra for different cell
orientations and positions; the probed volume has a diameter of ca. 150 µm.

Figure 1 shows high-resolution Brillouin spectra for the PMMA crystal (case a)) at three
scattering wave vectors, q. The spectra recorded at two free spectral ranges were spliced
together using a constant intensity factor. Up to four (at highest q) Brillouin doublets are
observed in this crystalline sample, in clear distinction to the Brillouin spectrum of the liquid
suspension of PMMA spheres [10]. At a given q, the location of the peaks in the polarized Bril-
louin spectrum of fig. 1 defines the experimental phonon frequencies; the colloidal suspension
displays a broad featureless Rayleigh-Brillouin spectrum in the depolarized geometry.

The inelastic light scattering cross-section, d2σ/dΩdωf , by a phonon of wave vector k and
branch s (s = 1, 2, 3, ...) is given by

d2σ

dΩdωf
∝ kBT

ω2
ks

|Aq|2[δ(ω − ωks)δq,k+Km
+ δ(ω + ωks)δq,−k−Km

], (1)

where Aq =
∑

K′
m

νK′
m

(q−K
′
m) · ũq−K′

m
; Km, K

′
m are vectors of the reciprocal lattice, νK′

m

is the normalized Fourier coefficient of the electron concentration, ũq−K′
m

is the normalized
Fourier coefficient of the phonon displacement vector uks(r), and ω ≡ ωi−ωf . The momentum
�q lost by the photon is transferred in part to the phonon, �k, and in part to the periodic
lattice, �Km. It follows that the peak at ω = ωks may appear not only at q = k, as in a
uniform medium, but at more than one q = k + Km, depending on the magnitude of |Aq|2.
For acoustic branches, where ωks ∼ k (k = |k|), and for kd � 1, the sum in Aq is dominated
by the term ũk and, consequently, Aq ≈ Ak ≈ k·ũk.

In fig. 2 we plot for the case a) the experimental frequencies ωks vs. qd, together with
the results of theoretical calculations performed by employing established band structure
techniques for solving the elastic wave equation which depends on the densities and the elastic
constants; the interparticle potential plays a minor role in the phonon dispersion. We chose
an infinite periodic fcc lattice taking into account that the structure is usually either hcp
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Fig. 1 – Polarized Brillouin spectra obtained at three scattering wave vectors, q, for a colloidal crystal
consisting of PMMA spheres (of diameter d ≈ 605 nm and volume fraction φ ≈ 0.52) in an almost
symmetric decalin/tetralin mixture, at 20 ◦C. The frequency region which lies approximately ±0.5
GHz from the central peak is fed to the reference beam used for the stabilization of the interferometer.

Fig. 2 – Phonon dispersion relations for the system of fig. 1. Solid circles denote the experimental
data. Open circles and open squares denote theoretical results based on the multiple scattering (MS)
and the plane wave (PW) method, respectively. The experimental points for qd < 7 are replotted
in the inset together with lines to guide the eye. The arrows on the vertical axis of the inset and
the horizontal lines indicate the frequencies of the (slightly damped) eigenmodes of a single PMMA
sphere embedded in the solvent; the letters next to them denote the spherical harmonic character of
these eigenmodes. The arrow on the horizontal axis corresponds to the center-surface distance of the
first Brillouin zone in the [111] direction. The solid line fits the measured dispersion relation for the
longitudinal phonons in the solvent.

or fcc [5, 9], and that the latter facilitates the calculations without significantly affecting the
theoretical results. The open circles represent phonon dispersion relations, ωks vs. |k+Km|d,
obtained by a sophisticated multiple scattering (MS) method [11], which is very reliable for
low frequencies but too costly to extend to higher values. To remedy this deficiency we also
employed the plane wave (PW) method [4,12] (open squares in fig. 2) which, in addition, allows
a direct estimation of the amplitude Aq; however, the PW method forces us to treat the solvent
as artificially possessing a small shear modulus, G. We kept only those ωks vs. k points which
do not change as G becomes smaller and smaller. There is a proliferation of theoretical points
because for each calculated (k, ωks) point (k in the first Brillouin zone (BZ)) we created
many equivalent points by adding various Km vectors to k. This is necessary, since in a
polycrystalline sample the vector Km, which reduces the measured momentum transfer, �q,
to the first BZ, cannot be obtained experimentally. In fig. 2 we kept those theoretical points
which correspond to phonons with strong coupling to the photons, i.e. large intensity in eq. (1).

To obtain a simple physical picture of the observed modes we also calculated the eigen-
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modes [13] of a single PMMA sphere embedded in the decalin/tetralin solvent; these eigen-
modes were obtained from the resonances in the scattering cross-section of a plane acoustic
wave by a single PMMA sphere; the corresponding eigenfrequencies are indicated by arrows (in
the frequency axis) and horizontal lines in the inset of fig. 2. The overall agreement between
the theoretical results and the experimental data is good, given that no adjustable parameter
was involved. The low-q acoustic mode is confined predominantly in the solvent as evident by
the fact that the phase velocity, both experimentally and theoretically, almost coincides with
the phase velocity of the solvent. Furthermore, as ω and q are increased (ω � 3 GHz, qd � 8)
the results can be interpreted, to a first approximation, as hybrids due to the coupling of the
ω = clk longitudinal solvent mode with the local modes of each individual PMMA sphere as
shown by the crossovers in the inset of fig. 2. Since the contrast in the elastic constants and
density between the solvent and the PMMA is rather low, this coupling is expected and found
to be strong, leading to an acoustic gap. The latter is, probably, further enhanced because
it almost coincides with the boundaries of the first BZ (arrow on the x-axis of fig. 2). The
modes beyond the arrow correspond to |q| = |k+Km| with Km �= 0. Finally, the high-q–high-
ω spectrum is dominated by an average acoustic-like mode shared by both components, as
confirmed by explicit displacement field calculations. The high-q–low-ω modes are associated
mostly with individual spheres. Both modes are present in the colloidal liquid phase [10], the
main difference confined in the vicinity of the first Brillouin zone edges.

We present next (see fig. 3) the rich phonon spectrum of the silica colloidal crystal (case b)),
where the elastic constants contrast [7] between the silica spheres and the solvent is large. Up
to five hypersonic excitations at a given wave vector can be resolved, with quite different
amplitudes in contrast to the phonons in fig. 1. In fig. 4 we display the experimental points
ωks vs. qd for the silica colloidal crystal, together with the theoretical results. The arrows in
the vertical axis indicate theoretical results, obtained as in case a), for the eigenfrequencies of
a single silica sphere embedded in cyclohexane/decalin. The open circles represent theoretical
dispersion relations, ωks vs. |k+Km|d, obtained by the MS band structure method [11]. The
lowest (s = 1) frequency branch, ωk1 vs. qd, corresponds to an acoustic phonon, since its
dispersion curve matches well the theoretical first band in the first Brillouin zone. Further-
more, comparing this dispersion curve at low q with that of the longitudinal phonon in the
pure fluid (solid line in fig. 4), one can see that the corresponding velocity is slightly higher
than that in the solvent. This indicates that the propagation takes place almost exclusively
through the fluid with only a minute fraction in the silica spheres.

The dispersion curves of the next two branches (s = 2, 3) are in reasonable agreement
with the corresponding theoretical bands, for different directions in both the first and the
higher Brillouin zones. We also calculated the energy density distribution of these branches
and found that the energy is residing mostly in the solvent. These findings imply that in the
s = 2, 3 modes the wave is repeatedly bouncing off the spheres without penetrating into them,
a result which is consistent with the large mismatch between silica and solvent.

The fourth and fifth rather flat bands in fig. 4 lie close to the single-silica-sphere eigenfre-
quencies associated with the 	 = 2 and 	 = 3 spherical harmonic, respectively [14]. Thus we
propose that these two highest bands are essentially a coherent superposition of single-sphere
eigenmodes. This is the phonon analog of the d-bands in transition metals and f -bands in rare
earths, made of superposition of atomic d and f orbitals, respectively. To prove this statement,
we calculated the energy density distribution of these d (	 = 2) and f (	 = 3) single-silica-
sphere modes, and found that they are well localized inside the spheres with a weak leakage
outside. The density of the energy which escapes in the solvent is small, thus weak overlap
with similar modes in neighboring spheres is expected. This weak overlap is consistent with
the flatness in q space and the narrowness of the corresponding frequency bands.
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Fig. 3 – Brillouin spectra obtained at four scattering wave vectors, q, for a colloidal polycrystalline
suspension of silica spheres (of diameter d ≈ 250 nm and volume fraction φ ≈ 0.62) in cyclohex-
ane/decalin mixture, at 20◦C. For the sake of clarity the spectrum at q = 0.026 nm−1 is shifted by a
factor of 5.

Fig. 4 – Phonon dispersion relations for the system of fig. 3. Solid circles are the experimental
data for the five observed bands, while open circles are theoretical results based on the MS method.
The arrows on the vertical axis indicate the eigenfrequencies of a single silica sphere embedded in
the solvent; the letters above them denote the spherical harmonic character of the corresponding
eigenmodes. The arrow on the horizontal axis corresponds to the center-surface distance of the first
Brillouin zone in the [111] direction. The solid line fits the measured dispersion of the longitudinal
phonon in the solvent.

In conclusion, we measured, for the first time, acoustic-like and optical-like phonon dis-
persion relations by inelastic Brillouin light scattering in polycrystalline colloidal suspensions.
The crystallinity reveals itself by the appearance of additional modes at high q, low ω (due
to the momentum transfer, �Km, to the lattice), and at high frequency (due to the enhanced
scattering strength). Four optical-like modes were observed in the crystalline silica case as
opposed to one in a liquid suspension of silica particles. Also, structure at the boundary of
the Brillouin zone was observed at some ω vs. q plots, indicative of the crystalline order. Sig-
nificant differences, mainly in the amplitude behavior, were observed between case b) (large
elastic constants contrast [7] between solvent and sphere material) and case a) (where this
contrast is not large); in case a), the internal modes of each sphere mix strongly with the
acoustic mode of the fluid. The data agree reasonably well with theoretical band structure re-
sults obtained by the multiple-scattering method. Simple physical explanations were proposed
based partly on the vibration eigenmodes of a single sphere embedded in the solvent.
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