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Περιληψη

Η μεταπτυχιακή εργασία εντάσεται στην ευρύτερη περιοχή της Κβαντικής Οπτικής. Το αντικείμε-

νο εξειδικεύτεται στις ιδιότητες ακτινοβολίας ατομικών συλλογών, με διατομικές αποστάσεις μι-

κρότερες του μήκους κύματος, που οδηγούνται από σύμφωνη ακτινοβολία laser και αλληλεπιδρούν
έντονα μεταξύ τους μέσω της αλληλεπίδρασης δίπολου-διπόλου στον ελεύθερο χώρο. Μελετάμε

μεγάλα διδιάστατα πετάσματα ατόμων υπό την προσέγγιση της μονής διέγερσης διερευνώντας

τη συλλογική τους συμπεριφορά που οδηγεί στην ενισχυμένη διατομή σκέδασης. Επιπλεόν,

προτείνουμε τρόπους εκμετάλλευσης της συλλογικής απόκρισης για τη δημιουργία κατόπτρων,

φακών και εκτροπέων για ασθενείς δέσμες φωτός. Αναπτύξαμε μια αριθμητική μέθοδο για να

περιγράψουμε αποτελεσματικά το σύστημα διάχυσης πολλών σωμάτων των ατόμων που βρίσκο-

νται σε κοντινή απόσταση χρησιμοποιώντας μια προσέγγιση στοχαστικής κυματοσυνάρτησης

Monte-Carlo προσαρμοσμένη να εξηγεί τη συνεργατική αποδιέγερση των πολλαπλά διεγερμένων
ατομικών συστημάτων. Εφαρμόζουμε αυτή τη μέθοδο σε ποικίλες γεωμετρίες ατόμων διότι μας

επιτρέπει να μελετάμε την εκπομπή υπερακτινοβολίας και υποακτινοβολίας των φωτονίων και να

υπολογίζουμε τις συσχετίσεις τους αποκαλύπτοντας τη συσσώρευση (bunching) και την αντι-
συσσώρευση (antibunching) φωτονίων. Για την καλύτερη κατανόηση των φασμάτων διέγερσης
του συστήματος καθώς και των συσχετίσεων μεταξύ των εκπεμπόμενων φωτονίων, διαγωνο-

ποιούμε την μη-Ερμητιανή Χαμιλτονιανή του συστήματος και εξάγουμε τις διάφορες διαδρομές

διέγερσης και συλλογικής αποδιέγερσης που εξερευνά το σύστημα κάτω από συνεχή ακτινοβο-

λία (continuous wave) laser. Η παρούσα μελέτη ειναι επίκαιρη και σχετική με την πρόσφατη
αναζήτηση περιοδικών συστοιχιών ατόμων που χρησιμεύουν ως οπτικές κεραίες (optical anten-
nas) με ιδιαίτερα χρήσιμες ιδιότητες, συμπεριλαμβανομένης της εξαιρετικά αποτελεσματικής και
κατευθυντικής εκπομπής, απορρόφησης και ανάκλασης φωτονίων. Με σκοπό να προχωρήσουμε

πέρα από τις προηγούμενες μελέτες δεν περιορίζουμε τον χώρο Hilbert του συστήματος σε μία ή
λίγες διεγέρσεις, γεγονός που μας επιτρέπει να αποκαλύψουμε τη μη-γραμμική συμπεριφορά της

αλληλεπίδρασης ατόμου-φωτός.





Abstract

This thesis lies in the broader area of Quantum Optics. The subject focuses in the radi-
ation properties of atomic ensembles with subwavelength interatomic distances driven by
coherent laser radiation and strongly interacting with each other via the free-space dipole-
dipole interaction. We study large two-dimensional arrays of atoms under the single excita-
tion approximation, exploring their collective behavior with enhanced effective cross section
for interaction with light. We then suggest ways of exploiting collective atomic response
to create mirrors, lenses and deflectors for weak beams of light. We developed a numerical
method to efficiently describe the many-body dissipative system of closely-spaced atoms using
a Monte-Carlo stochastic wavefunction approach adapted to account for cooperative decay of
multiply-excited states of the system. We apply this method to various geometries of atomic
positions in order to study superradiant and subradiant emission of the photons and calculate
their correlations revealing the photon bunching and anti-bunching. To better understand
the laser-excitation spectrum of the system and the correlations of the emitted photons, we
diagonalize the effective non-Hermitian Hamiltonian and deduce the various excitation and
collective decay paths that the system explores during the continuous driving. Our stud-
ies are relevant to the recent quest to tailor the cooperative radiative properties of periodic
arrays of atoms serving as phased-array optical antennas with unique properties, including
the highly efficient and directional photon emission, absorption and reflection. But in order
to go beyond the previous studies, we do not truncate the Hilbert space of the system to a
single or a few-excitation sub-space, which permits us to reveal the non-linear regime of the
cooperative atom-light interaction.
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Chapter 1

Introduction

Superradiance and subradiance have been an active topic of research since the seminal paper
of Dicke [1] on collective emission of atoms confined within a distance that is small com-
pared to the wavelength of the resonantly emitted radiation. The behavior of the single and
multiple-excitation states of the interacting atoms can be understood in terms of the col-
lective eigenstates of an effective non-Hermitian Hamiltonian [2, 3], which exhibit enhanced
(superradiant) and suppressed (subradiant) decay rates, together with level shifts (collective
Lamb shift) [4]. Recent experiments have demonstrated both subradiance [5,6] and superra-
diance [7] in large, dilute atomic clouds.

The present thesis deals with collection of atoms which interact with each other through
the free radiation field modes. This coupling affects the way the atomic ensemble can be ex-
cited and how they decay by radiating photons exhibiting superradiance and subradiance phe-
nomena [1]. Although there has been an extended research on the collective single-excitation
states of the spatially-periodic atomic ensembles [8–11], much less has been done for the mul-
tiple excited states, which is one of the main purposes of this project. The second purpose
is to investigate further the singly-excited subwavelength atomic arrays in order to explain
their behavior as perfect mirrors for the incoming photons. We also take advantage of the
cooperative enhancement of the light–matter coupling [12] and explore the possibilities to
focus and deflect an incoming photon mode by two-dimensional periodic arrays of atoms.

In chapter two we present the mathematical framework to describe the quantum interac-
tions between N cold atoms at random positions and the quantized radiation field mediating
interatomic interactions and their collective behavior. We derive the master equation for
the reduced density matrix of the atomic system, and we introduce the Quantum Stochastic
Wavefunction Monte–Carlo method and apply it to our problem.

In chapter three we consider singly-excited atomic ensembles and study the atomic re-
sponse to a weak incident laser beam. We reveal the ability of periodic subwavelength arrays
to achieve enhanced optical cross section and suggest ways to increase it further by applying
spatially modulated detuning of the atoms in the array. We also propose detuning profiles
that result in focusing and deflection of the incoming photon beams.

In chapter four we investigate small ensembles of closely-spaced atoms by looking at their
eigenvalue spectrum, emission rate spectra, and excitations in the system. We calculate the
second order correlation function of the radiated photons revealing photon bunching and
anti-bunching.

Finally, in chapter five we summarize the conclusions of the last two chapters and discuss
possible future extensions of this work.
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Chapter 2

Theoretical Framework

The purpose of this chapter is to set the appropriate theoretical and mathematical foundations
to describe the superradiant and subradiant phenomena in ensembles of interacting atoms.
In the first section we derive the Master Equation (ME) for the reduced density matrix for an
ensemble of atoms. In the second section, we present the Quantum Stochastic Wavefunction
(QSW) Monte-Carlo method for the simple case of an isolated atom driven by classical field.
We the derive the QSW Monte-Carlo method for an ensemble of atoms and compare the
results with those obtained from ME for the case of two closely spaced atoms.

2.1 Derivation of Master Equation

Consider a collection of N identical nonoverlapping atoms at positions r1, r2, ....rN coupled
to the free-space quantized electromagnetic field Ê(r) =

∑
k âkuk(r), where âk (â†k) are the

bosonic annihilation (creation) operators for the plane-wave mode

uk(r) = êk,ν

√
ℏωk

2ϵ0V
eik·r , (2.1)

where k is the wave vector, êk,ν are the polarization unit vectors (ν = 1, 2), ωk is the
frequency, and ϵ0 is the vacuum permittivity. Note that these modes form a complete basis
for the field within the quantization volume V . Each atom is assumed to have only two
relevant energy states1, the excited |e⟩ and the ground state |g⟩. The Hamiltonian of the
system is

H = HField +HSystem + V

=
∑
k

ℏωkâ
†
kâk +

N∑
j=1

∑
µ=g,e

ℏωµ |µ⟩j ⟨µ| −
N∑
j=1

E(rj , t) ·
(
℘ |e⟩j ⟨g|+ ℘∗ |g⟩j ⟨e|

)

−
N∑
j=1

(
Ê(rj) + Ê†(rj)

)
·
(
℘ |e⟩j ⟨g|+ ℘∗ |g⟩j ⟨e|

)
,

(2.2)

where the first term on the right-hand side is the Hamiltonian for the field modes with
energies ℏωk, the second term (double summation) corresponds to the energies ℏωµ of the
atomic levels |e⟩ and |g⟩, the third term represents the interaction of the atoms at positions rj

1For this reason we may also refer to atoms as Two-Level Systems (TLS).

3



4 Chapter 2

with the classical driving laser, and the last term describes the coupling of the atoms to the
quantized free-space radiation field, within dipole approximation, with the dipole moment ℘
on the transition |e⟩ −→ |g⟩. The classical field is assumed to be polarized along the direction
ê and its amplitude is

E(r, t) = êE(r)e−iωct + ê∗E∗(r)eiωct , (2.3)

with frequency ωc and wave vector kc = n̂ωc/c (where n̂ · ê = 0). Without loss of generality,
we can set the atomic ground state energy as ℏωg = 0.

Equation (2.2) is our starting point. The next step is to write and solve the equation of
motion for the bosonic annihilation (or creation) operators of the field. Namely, from the
Heisenberg equation of motion we have

iℏ
∂âk
∂t

= [âk,H] =⇒

∂âk
∂t

= −iωkâk(t) +
i

ℏ

N∑
j=1

√
ℏωk

2ϵ0V
êk,ν · ℘

(
σ̂j(t) + σ̂†

j(t)
)
eik·rj ,

(2.4)

hence

âk(t) = âk(0)e
−iωkt

+
i

ℏ

N∑
j=1

√
ℏωk

2ϵ0V
êk,ν · ℘ eik·rj

∫ t

0
dt′
(
σ̂j(t) + σ̂†

j(t)
)
e−ωk(t−t′) (2.5)

where σ†
j ,σj are the atomic raising and lowering operators, σ̂j = |g⟩j⟨e|.

Next we write the equation of motion for an arbitrary atomic operator Q̂(t),

iℏ
∂Q̂

∂t
=
[
Q̂,H

]
=⇒

∂Q̂

∂t
= iωe

N∑
j

[
σ̂†
j(t)σ̂j(t), Q̂(t)

]
− i

ℏ

N∑
j

[
ŝj(t), Q̂(t)

]
E(rj , t) · ℘

− i

ℏ

N∑
j

[
ŝj(t), Q̂(t)

]
Ê(rj) · ℘− Ê†(rj) · ℘

[
Q̂(t), ŝj(t)

]
,

(2.6)

where ŝj(t) = σ̂†
j(t) + σ̂j(t). We insert Eq. (2.5) into Eq. (2.6), convert the summation over

all bosonic modes to integration through the well known relation

∑
k,ν

−→ V

(2π)3

∫
d3k

2∑
ν=1

=
V

(2π)3

∫ ∞

0
k2d2k

∫
4π

dΩk

2∑
ν=1

, (2.7)

trace out the bosonic degrees of freedom, and apply the rotating wave approximation (RWA)
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[13] and the Weisskopf-Wigner approximation1 [14] to obtain [15]

∂Q̂

∂t
=−

N∑
j

i∆
[
σ̂†
j σ̂j , Q̂

]
−

N∑
j

i
[
Ωje

i(kc·rj)σ̂†
j +Ω∗

je
−i(kc·rj)σ̂j , Q̂

]

+
N∑
i ̸=j

iJij

[
σ̂†
i σ̂j , Q̂

]
+

N∑
i,j

Γij

[
σ̂†
i Q̂σ̂j −

1

2

(
σ̂†
i σ̂jQ̂+ Q̂σ̂†

i σ̂j

)]
,

(2.8)

where we introduced the detuning ∆ = ωc − ωe, and the Rabi frequency Ω = ℘ · êE/ℏ.
Equation (2.8) is written in the frame rotating with the frequency ωc of the external classical
field E, and we dropped the obvious time-dependence notation for all the atomic operators,
i.e. σ̂ ≡ σ̂(t). In Eq. (2.8) the third and forth terms represent the rate of coherent interactions
and dissipative interactions between atom i and atom j, respectively, [10] given by

−Jij + i(Γij/2) =
k2e
ℏϵ0

℘∗ ·G(ri, rj , ωe) · ℘ , (2.9)

where the wave number ke = 2π/λe corresponds to the atomic resonant frequency ωe, and

the Green’s tensor G(ri, rj , ω0) is the fundamental solution of of the electromagnetic wave
equation2 [16, 17]

G(ri, rj , ω0) =
eik0r

4πr

[(
1 +

i

k0r
− 1

k20r
2

)
I+

(
−1− 3i

k0r
+

3

k20r
2

)
r ⊗ r

r2

]
, (2.10)

with I being the unit dyad (unit tensor), and r = ri − rj . Equation (2.9) can be written in
an explicit form as

Jij
Γ

= −3

4

{[
1− (℘̂ · r̂ij)2

]cos (kerij)
kerij

−
[
1− 3 (℘̂ · r̂ij)2

] [sin (kerij)
(kerij)

2 +
cos (kerij)

(kerij)
3

]} (2.11a)

Γij

Γ
=

3

2

{[
1− (℘̂ · r̂ij)2

]sin (kerij)
kerij

+
[
1− 3 (℘̂ · r̂ij)2

] [cos (kerij)
(kerij)

2 − sin (kerij)

(kerij)
3

]}
,

(2.11b)

where Γ = 1
4πϵ0

4k3e |℘eg |2
3ℏ is the usual spontaneous decay rate of an isolated atom in excited

state [13], ℘̂ ≡ ℘eg/℘ is the unit vector in the direction of the atomic dipole moment,
r̂ij ≡ rij/rij is the unit vector along the direction of the relative position vector rij = ri−rj ,
and rij ≡ |rij | is the distance between atoms i and j. In Eq. (2.8), in the summation for Γ’s
the term Γjj = Γ, while in the summation of J ’s we excluded the terms i = j assuming that

1It is also known as Born-Markov approximation.
2In other words, Green’s function describes the electromagnetic field at point ri produced by a (point)

dipole at rj oscillating with frequency ω0.
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0 2π 3π 4π

0

1
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π
krij

J /Γij 
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-J  /Γij
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0 2π 3π 4π

0

1

2

π
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Γ /Γih 

Γ /Γij 

Γ /ij /ij ΓΓΓ /ij Γ

Figure 2.1: Dependence of the dipole-dipole interaction between two atoms on the normal-
ized interatomic distance krij . (a) Exchange rates Jij for dipole matrix element ℘ parallel
(red), perpendicular (blue) and circular (grey) to rij . (b) Decay rates Γij for the same com-
binations of ℘ and rij .

the single-atom Lamb shift is incorporated into ωe since otherwise Eq. (2.11a) would diverge
when rij → 0. The exchange rates Jij with i ̸= j originate form the exchange of the virtual
transverse photons between atoms i and j [18]. In Fig. 2.1 we show the spatial dependence
of the exchange and decay rates for different orientations of the atomic dipole moment.

The last step is to define an appropriate atomic operator Q̂ and plug it into Eq. (2.8) to
obtain the Master Equation for the density matrix. Since Q is an arbitrary combination of
atomic operators, we can use

Q̂(t) = P̂β,α (t) = ei
H
ℏ t |β⟩ ⟨α| e−iHℏ t, (2.12)

where P̂α,β (t) can be referred as transition operator for the atomic states. We choose this
operator because the matrix elements of the density operator for the atomic system satisfy
the following relation [19]

ρ̂
(A)
α,β (t) = ⟨α|TrR{ρ̂ (t)} |β⟩ = TrR{⟨α| ρ̂ (t) |β⟩} = TrR{⟨α| e−iHℏ tρ̂ (0) ei

H
ℏ t |β⟩}

= TrR{ρ̂ (0) ei
H
ℏ t |β⟩ ⟨α| e−iHℏ t} = TrR{ρ̂ (0) P̂β,α (t)}

= ⟨P̂β,α(t)⟩ ,

(2.13)

where ρ̂(A) is the reduced density matrix of the atomic ensemble, ρ̂ is the total density matrix
of the system, and TrR denotes a trace over the degrees of freedom of the free-space radiation
field (also known as reservoir). Since we care only about the reduced density matrix, from
now on we shall omit the superscript and denote it as ρ̂. We can write the master equation
for the reduced density matrix by substituting Eq. (2.12) into Eq. (2.8) and specifying the
total number of atoms. Thus, for every element of density matrix we have to calculate
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˙̂ρα,β(t) = ⟨ ˙̂Pβ,α(t)⟩, or equivalently

˙̂ρ(t) =
N∑
j

i∆
[
σ̂†
j σ̂j , ρ̂

]
+

N∑
j

i
[
Ωje

i(kc·rj)σ̂†
j +Ω∗

je
−i(kc·rj)σ̂j , ρ̂

]
−
∑
i ̸=j

iJij

[
σ̂†
i σ̂j , ρ̂

]
+
∑
i,j

Γij

[
σ̂iρ̂σ̂

†
j −

1

2

(
σ̂†
i σ̂j ρ̂+ ρ̂σ̂†

i σ̂j

)]
.

(2.14)

Equation (2.14) is the master equation of the ensemble of N atoms and it can also be written
in the Lindbland form as

˙̂ρ(t) = − i

ℏ
[HS , ρ̂] + L [ρ̂] (2.15)

whereHS is the Hermitian Hamiltonian of the system, while L [ρ̂] describes the non-Hermitian
dynamics of the system due to the coupling to a Markovian reservoir [13]. In our case these
two terms are given by

HS = −
N∑

ℏ∆σ̂†
j σ̂j −

N∑
j

ℏ
(
Ωje

i(kc·rj)σ̂†
j +H.c.

)
+

N∑
i ̸=j

ℏJij σ̂†
i σ̂j , (2.16a)

L [ρ̂] =

N∑
i,j

Γij

[
σ̂iρ̂σ̂

†
j −

1

2

(
σ̂†
i σ̂j ρ̂+ ρ̂σ̂†

i σ̂j

)]
. (2.16b)

Note that for N non-interacting atoms there are 2N atomic states and N + 1 energy levels
with the degeneracy of every energy level being

W (ng) =
N !

ng!(N − ng)!
, (2.17)

where ng is the number of atoms in the ground state |g⟩. On the other hand, a system with
N interacting two-level atoms has 2N states and in general non-degenerate energy levels.

Now that we have the master equation we can solve the differential equations for each
density matrix element to see how the atomic populations and the coherences are distributed
and evolve with time. However, there are only a few special cases that admit analytic solutions
of these coupled equations, and thus the solutions must in general be obtained numerically.

2.1.1 Analytical solution for interacting pair of atoms

In this section, we present and discuss the case of two dipole-dipole interacting atoms, one
of the very few cases that Eq. (2.14) accommodates analytical solution [20]. This is the first
step in order to understand how the smallest system evolve in time and also reveal the super
and subradiance with atoms. Although this system has analytical solution, we will also solve
it numerically and verify the consistency of our results in Section 2.2.3.1. Other than the
pair of atoms, there is an analytical solution for three atoms placed in an equilateral triangle
configuration [21].

Consider a pair of atoms placed in distance rij as shown in Fig. 2.2(b). As discussed in
Sec. 2.1, the atoms are coupled through the free radiation field which results in the cooperative
frequency shift J12 = J21 and cooperative decay rate Γ12 = Γ21, both being functions of the
interatomic distance and the direction of ℘ with respect to rij , see Eqs. (2.9). Before we
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Γ + Γ12 Γ  Γ12–

Γ + Γ12 Γ  Γ12–

|ee 〉

|gg 〉0

−2Δ

−Δ+J12

− −Δ J12 |e–g 〉

|e+g 〉 Z

X

Y

(a) (b)

 rij 

Figure 2.2: (a) Energy level diagram (ℏ = 1), in the rotating frame, for a coupled pair of
atoms with the two possible decay channels. With the cooperative decay rate Γ12 > 0, the
decay channels are distinguished as superradiant, with decay rate Γ + Γ12, and subradiant
with decay rate Γ − Γ12. (b) Schematic of two atoms placed in distance rij and coupled
through the free-space radiation field.

proceed to the solution of the density matrix we shall point out that there are two equivalent
basis one can use, the bare or common basis and the diagonal basis

Bare basis

|ee⟩ = |e⟩1 |e⟩2
|eg⟩ = |e⟩1 |g⟩2
|ge⟩ = |g⟩1 |e⟩2
|gg⟩ = |g⟩1 |g⟩2

Diagonal basis

|ee⟩ = |e⟩1 |e⟩2
|e+ g⟩ = (|eg⟩+ |ge⟩) /

√
2

|e− g⟩ = (|eg⟩ − |ge⟩) /
√
2

|gg⟩ = |g⟩1 |g⟩2 .

(2.18)

Although it seems more simple to use the bare basis, it is convenient to choose the diagonal
one because in this way we can get a better insight into frequency shifts, and super- and
sub-radiant decay of the system.1

Now, we shall use Eq. (2.14) assuming that there is no external driving field (Ω = 0) and
write the corresponding differential equations in the diagonal basis

ρ̇ee;ee = −2Γρee;ee (2.19a)

ρ̇e+g;e+g = (Γ + Γ12) ρee;ee − (Γ + Γ12) ρe+g;e+g (2.19b)

ρ̇e−g;e−g = (Γ− Γ12) ρee;ee − (Γ− Γ12) ρe−g;e−g (2.19c)

ρ̇gg;gg = −ρ̇ee;ee − ρ̇e+g;e+g − ρ̇e−g;e−g (2.19d)

ρ̇ee;e+g = i (∆ + J12) ρee;e+g −
1

2
(3Γ + Γ12) ρee;e+g (2.19e)

ρ̇ee;e−g = i (∆− J12) ρee;e−g −
1

2
(3Γ− Γ12) ρee;e−g (2.19f)

ρ̇ee;gg = (i2∆− Γ) ρee;gg (2.19g)

ρ̇e+g;e−g(t) = − (i2J12 + Γ) ρe+g;e−g (2.19h)

1In Sec. 2.2.3 we present a formal way to introduce the diagonal basis.
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ρ̇e+g;gg = i (∆− J12) ρe+g;gg + (Γ + Γ12)

(
ρee;e+g −

1

2
ρe+g;gg

)
(2.19i)

ρ̇e−g;gg(t) = i (∆ + J12) ρe−g;gg − (Γ− Γ12)
(
ρee;e−g +

1

2
ρe−g;gg

)
, (2.19j)

where we used the notation ρu;v = ⟨u| ρ̂ |v⟩. Since the density matrix is by definition Hermi-
tian operator, we wrote the equations for the upper triangular matrix.

The above set of equations could also be derived from the energy diagram given in
Fig. 2.2 (a). These equations are easy to solve because they are almost decoupled and
all of the same form. The first four equations obviously refer to diagonal matrix elements
where we also used the density matrix property Tr{ρ̂} = 1. For sake of completeness we write
the solutions of the diagonal elements which can reveal how the atomic populations evolve in
time

ρee;ee = ρee;ee(0)e
−2Γt (2.20a)

ρe+g;e+g = e−Γt

[
ρe+g;e+g(0)e

−Γ12t + ρee;ee(0)
(
e−Γ12t − e−Γt

) Γ + Γ12

Γ− Γ12

]
(2.20b)

ρe−g;e−g = e−Γt

[
ρe−g;e−g(0)e

Γ12t + ρee;ee(0)
(
eΓ12t − e−Γt

) Γ− Γ12

Γ + Γ12

]
(2.20c)

ρgg;gg = 1− ρee;ee − ρe+g;e+g − ρe−g;e−g . (2.20d)

As the interatomic distance decreases, r12 → 0, cooperative decay rate approaches its maxi-
mum value, Γ12 → Γ, and Eqs. (2.20b-c) reduce to

ρe+g;e+g −→ e−2Γt (ρe+g:e+g(0) + 2Γtρee;ee(0)) (2.21a)

ρe−g;e−g −→ ρe−g;e−g(0) , (2.21b)

independent on the dipole moment polarization and the frequency shift. These equations re-
veal clearly two cases: (i) a fully excited pair of atoms decays to ground state solely through
the symmetric path and emits photons with rate 2Γ, (ii) atoms in antisymmetric state, with
almost zero interatomic distance, are unable to emit photons and decay to ground state, and
thus the population in state |e− g⟩ remain trapped [1, 15,20].

As an example we examine how the pair of atoms evolves in time when the atoms are
placed along y-axis with relative distance r12 = (1/4)λ, dipole moment along z-axis ℘ = ℘ẑ
(see Fig. 2.2(b)) and initial conditions ρee;ee(0) = 1 , ρe+g;e+g(0) = ρe−g;e−g(0) = ρgg;gg(0) = 0.
These initial conditions correspond to a fully excited system with both atoms in the excited
state. Figure 2.3(a) shows the evolution of population of every state and reveals that atomic
system prefers a specific way to decay to ground state, as predicted by Dicke [1]. For the
chosen configuration, the double excited state |ee⟩ prefers to decay to ground state |gg⟩
through the symmetric state |e+ g⟩. Obviously, the superradiant and subradiant channels
are functions of the whole configuration, interatomic distance r12, direction of atoms r̂12,
and dipole moment ℘. Figure 2.3(b) corresponds to the same configuration with the only
difference that atoms and dipole moment are both along z-axis. The results are similar but
not exactly the same because of the different complex dipole-dipole exchange interaction,
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Figure 2.3: Time evolution of diagonal elements of density matrix for a pair of atoms with
relative distance r12 = λ/4, dipole moment along z-axis, ℘ = ℘ẑ, and initial conditions
ρ̂ee;ee(0) = 1. Graphs in column (a) depicts the case where atoms are placed along x-axis
(℘⊥r12) and graphs in column (b) depicts the case where atoms are along z-axis (℘ ∥ r12).
In the first row we plot the double excited state population and the ground state population,
while in the second the single excited symmetric and antisymmetric state population.

Γ
∥
12(1/2) > Γ⊥

12(1/2) as it is shown in Fig. 2.1(b). Due to the larger cooperative decay rate of
parallel configuration, the symmetric state gains faster and more population but also decays
faster to the ground state compared to the perpendicular configuration. Notice also that in
the parallel case we let the system evolve for longer times because the subradiant channel
has lower population and lower decay rate, as compared to the y-axis configuration, and thus
needs more time to decay completely to ground state.

Hence, as the atoms are placed closed to each other, they decay stronger via the symmetric
state channel. In the limit of all the atoms placed at the same point of the space, or extremely
close rij ≪ λe, the system decays to the ground state only through the symmetric states [1].
In the case of two atoms we can calculate analytically the probability of the system to decay
through each path, the symmetric and the anti-symmetric. We can perform this calculation
because these states do not interact or exchange population, something that happens for
larger number of atoms N > 2. These two probabilities are given

P+ =
Γ + Γ12

2Γ
(2.22a)

P− =
Γ− Γ12

2Γ
. (2.22b)

In the limit of zero distance between the atoms the symmetric path probability approaches
unity P+ → 1, while decoupled atoms, r12 ≫ λe, would decay independently, Γ12 = 0 and
P+ = P− = 1/2.

2.2 Quantum Stochastic Wavefunction Monte-Carlo

In this section we begin with the general formulation of the Quantum Stochastic Wavefunction
method [13,22]. Next we present a simple example of its functionality. Afterwards we apply
this method to our system and reproduce the results of Fig. 2.3 using Monte-Carlo technique.

The time evolution of the reduced density matrix ρ̂ of a quantum system is governed by
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the master equation given in Eq. (2.15). We write it here again for sake of completeness,

˙̂ρ(t) = − i

ℏ
[HS , ρ̂] + L [ρ̂] , (2.15)

where HS the Hermitian Hamiltonian of the system and L[ρ̂] describes the non-Hermitian
dynamics of the system due to the coupling to a Markovian reservoir [13,23]. In general, the
Liouvillian L[ρ̂] has the so-called Lindbland form

L [ρ̂] =
∑
j

Γj

[
σ̂j ρ̂σ̂

†
j −

1

2

(
σ̂†
j σ̂j ρ̂+ ρ̂σ̂†

j σ̂j

)]
, (2.23)

where Γj is the decay or relaxation rate for channel j, and σ̂j , σ̂
†
j are the corresponding

lowering and raising operators of the system. It is convenient to separate the projective
terms of Eq. (2.23) and re-write the master equation in different, but still equivalent form.
Thus we define a non-Hermitian effective Hamiltonian of the system as

Heff ≡ HS − iℏ
∑
j

1

2
Γj σ̂

†
j σ̂j , (2.24)

and the so-called jump superoperator Ljump[ρ̂] ≡
∑

j Γj σ̂j ρ̂σ̂
†
j . The master equation (2.15)

can be written as
˙̂ρ = − i

ℏ

(
Heff ρ̂− ρ̂H†

eff

)
+ Ljump [ρ̂] . (2.25)

This equation reveals that the time-evolution of the density operator has two components,
the first one is due to the effective Hamiltonian Heff , which is deterministic and continuous
(although is non-Hermitian), and the second component is due to Ljump[ρ̂] which yields dis-

continuous projections σ̂j ρ̂σ̂
†
j , called quantum jumps, that preserves the trace of ρ̂ throughout

its evolution governed by the non-Hermitian Heff . Recall that density matrix can be written
as a statistical mixture

ρ̂ =
∑
Ψ

PΨ |Ψ⟩ ⟨Ψ| , (2.26)

where |Ψ⟩ are pure states of the system. Hence, Eq. (2.25) can be written as

∂ |Ψ⟩
∂t

⟨Ψ|+ |Ψ⟩ ∂ ⟨Ψ|
∂t

= − i

ℏ

(
Heff |Ψ⟩ ⟨Ψ| − |Ψ⟩ ⟨Ψ|H†

eff

)
+
∑
j

Γj σ̂j |Ψ⟩ ⟨Ψ| σ̂†
j , (2.27)

which suggests a very useful way of simulating the density operator of the system using the
wavefunction approach and statistical averaging as described below.

Consider a wavefunction of the system |Ψ⟩ evolving according to the Schrödinger equation

iℏ
∂

∂t
|Ψ⟩ = Heff |Ψ⟩ . (2.28)

We assume that at time t = 0 the state |Ψ⟩ is normalized. Since Heff is non-Hermitian, the
norm of the wavefunction || |Ψ⟩ (t)|| ≡

√
⟨Ψ(t)|Ψ(t)⟩ decreases with time. Physically, this

is due to the fact that the system is not isolated but is interacting with the reservoir. The
missing population of the decaying states of the system is thus leaking into the reservoir. For
instance, imagine a two-level system coupled to free radiation filed: if a photon is emitted



12 Chapter 2

into the reservoir at time t1, it means that a jump occurred in one of the j possible decay
channels which projects the wavefunction onto the corresponding state according to

|Ψ(t+1 )⟩ =
σ̂j |Ψ(t1)⟩√

⟨Ψ(t1)| σ̂†
j σ̂j |Ψ(t1)⟩

(2.29)

where t+1 denotes the instant time immediately after the quantum jump, while the denomina-
tor ensures the renormalization of the wavefunction. At any time t ∈ [0, t1], the probability
density for the decay to occur into a particular channel j is given by

pj(t) =
||
√

Γj σ̂j |Ψ(t)⟩ ||2∑
j ||
√
Γj σ̂j |Ψ(t)⟩ ||2

=
Γj ||σ̂j |Ψ(t)⟩ ||2∑
j Γj ||σ̂j |Ψ(t)⟩ ||2

, (2.30)

where we used the notation ||Â |Ψ⟩ || =
√

⟨Ψ| Â†Â |Ψ⟩. The total probability P (t) of the

decay is a monotonous function of time (recall that we assumed Markovian reservoir) and it
is given

P (t) =
∑
j

∫ t

0
dt′pj(t

′) = 1− ⟨Ψ(t)|Ψ(t)⟩ . (2.31)

The above equation states that as the state |Ψ⟩ evolves, under the action of the non-Hermitian
Heff , its norm decreases which means that the system has increasing probability to decay
through a quantum jump. In other words, an excited two-level system has zero probability
of decaying at time t = 0 because ⟨Ψ(t)|Ψ(t)⟩ = 1, however at times t′ > 0 there is finite
probability of the two-level system to decay to ground state because ⟨Ψ(t′)|Ψ(t′)⟩ < 1.

Now we shall explain the algorithm to simulate this process. We take the normalised
wavefunction |Ψ(0)⟩ and propagate it with the Schrödinger equation using the effective Hamil-
tonian Heff , as in Eq. (2.28). This propagation continues until a jump occurs at time t1.
At this time t1 the total probability satisfies the relation P (t) = r1, where r1 is a random
number generated from a uniform distribution, r1 ∈ [0, 1]. This number r1 determined the
total probability of a quantum jump, so if there are more than one decay channel we have to
generate another random number q1 and decide in which decay channel the jump occurred.
We then continue the time-evolution by repeating the above steps. The next jump will be
realised at a time t2 where P (t2) = r2, the random number q2 will point out the specific
channel of the jump and accordingly project the wavefunction through Eq. (2.29). The whole
process continues until we reach the desired final time tend which, is usually large compared
to the characteristic decay time of the system. This simulates a single quantum trajectory
with the normalised wavefunction of the system |Ψ̃(t)⟩ at any time t ∈ [0, tend] given by

|Ψ̃(t)⟩ = |Ψ(t)⟩
|| |Ψ(t)⟩ ||

. (2.32)

The density operator corresponds to the ensemble-averaged state of a system. To obtain
it, we can repeat the above process many times simulating M ≫ 1 independent quantum
trajectories and record the respective wavefunctions |Ψ̃m(t)⟩, where m = 1, 2, 3, ...,M . Then,
we can asymptotically approach the density operator of the system as

ρ̂(t) ≃ 1

M

M∑
m

|Ψ̃m(t)⟩ ⟨Ψ̃m(t)| . (2.33)
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Obviously, the larger the number of the simulated realizationsM the better the approximation
of Eq. (2.33). Now that we have a very close approximation of the density matrix we can
calculate the expectation value for any system operator through

⟨Â(t)⟩ = Tr
[
ρ̂(t)Â

]
≃ 1

M

M∑
m

⟨Ψ̃m(t)| Â(t) |Ψ̃m(t)⟩ . (2.34)

An important feature of the Q.S.W. Monte-Carlo technique is that using this method one
has only to deal with a wavefunction of dimension N , as opposed to working with the density
matrix and its N2 differential equations [23,24]. Hence, wavefunction simulations can provide
solutions for systems with large Hilbert space where a direct solution of the density matrix
is difficult due to limited computational memory [13, 23]. Moverover, since every trajectory
is by default independent, these simulations can be distributed in different processors and be
performed in parallel, resulting in a significant gain in computational power.

2.2.1 Spontaneous decay of a two-level atom

We first illustrate the method with a simplest example of spontaneous decay of an excited
two-level system coupled to a reservoir via the Liouvillian [13,25]

L [ρ̂] = Γ

[
σ̂ρ̂σ̂† − 1

2

(
σ̂†σ̂ρ̂+ ρ̂σ̂†σ̂

)]
. (2.35)

where for simplicity we assumed only a single decay channel. The effective non-Hermitian
Hamiltonian and the stochastic jump operator are then

Heff =− iℏ
1

2
Γσ̂†σ̂ , (2.36a)

L [ρ̂] = Γσ̂ρ̂σ̂† . (2.36b)

The Monte-Carlo simulations are realized via the following steps: (i) set the initial condition
|Ψ(0)⟩ = |e⟩, (ii) generate a random number r ∈ [0, 1], (iii) propagate the atomic wavefunction
|Ψ(t)⟩ = ce(t) |e⟩ + cg(t) |g⟩ with the Schroödinger equation using the effective Hamiltonian
Heff that yields the amplitude equations

ċg = 0 , (2.37a)

ċe = −1

2
Γce , (2.37b)

(iv) the propagation is interrupted by the quantum jump at time t1, which is determined by
the condition

P (t1) = 1− ⟨Ψ(t1)|Ψ(t1)⟩ = 1−
(
|cg(t1)|2 + |ce(t1)|2

)
= r1. (2.38)

The wavefunction is then projected onto the ground state according to

|Ψ(t+1 )⟩ =
σ̂ |Ψ(t1)⟩√

⟨Ψ(t1)| σ̂†σ̂ |Ψ(t1)⟩
=

ce(t1) |g⟩
|ce(t1)|

≡ cg(t
+
1 ) |g⟩ , (2.39)

where the global phase of wavefunction |Ψ(t+1 )⟩ that can be set zero without loss of generality
[13]. In our example, the state vector will be projected onto ground at time t ≥ t1 and
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Figure 2.4: Monte-Carlo simulations of the en-
semble averaged population of the excited state
of a two-level atom coupled to a radiation reser-
voir, as obtained from different number of inde-
pendent trajectories and compared to the ana-
lytical result (red dashed line). Inset: configu-
ration of the Gedanken experiment in which the
emitted by the atom photon is collected by ide-
ally perfect photodetectors whose click signify a
quantum jump of the atom to ground state.

remain there. This corresponds to a single trajectory, or numerical “experiment”, and if we
are interested in obtaining the density matrix we have to conduct many such experiments
as per Eq. (2.33). Figure 2.4 shows the excited state population ρe;e for different number
of realizations. Obviously, as the number of realizations grows Eq. (2.33) approaches the
analytic result ρe;e(t) = e−Γt, while in the case of just one quantum trajectory we can see
how a two-level system abruptly decays to ground state via a quantum jump.

2.2.2 Driven two-level atom

Let us now expand the previous example and apply Monte-Carlo formalism to a driven two-
level system coupled to reservoir. In the frame rotating with the frequency ω of the driving
field, the Hamiltonian of the system is

HS = −ℏ
(
∆σ̂†σ̂ +Ωσ̂† +Ω∗σ̂

)
, (2.40)

where we recall that ∆ = ω − ωeg is the detuning and Ω = ℘ · êE/ℏ is the Rabi frequency.
For simplicity, we consider only one decay channel due to the spontaneous emission from
the excited atomic state |e⟩ and the Liouvillian is given by Eq. (2.35). Hence, the effective
non-Hermitian Hamiltonian and the the jump superoperator are given

Heff = −ℏ

[(
∆+ i

1

2
Γ

)
σ̂†σ̂ +Ωσ̂† +Ω∗σ̂

]
, (2.41a)

L [ρ̂] = Γσ̂ρ̂σ̂† . (2.41b)

We apply the Monte-Carlo method via the following steps: (i) set the initial conditions
|Ψ(t)⟩ = |g⟩, (ii) draw the first random number r1 ∈ [0, 1], (iii) propagate the atomic wave-
function |Ψ(t)⟩ = ce(t) |e⟩+ cg(t) |g⟩ with the Schrödinger equation using the effective Hamil-
tonian Heff , which yields the amplitude equations

ċg = iΩ∗ce , (2.42a)

ċe =
(
i∆− 1

2
Γ
)
ce + iΩcg , (2.42b)
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Figure 2.5: Monte-Carlo simulations for the dynamics of a two-level system driven by a
classical field with |Ω| = 5Γ and detunings (a) ∆ = 0 and (b) ∆ = 2|Ω|. Upper row:
time evolution of the square of wavefunction norm ⟨Ψ(t)|Ψ(t)⟩ which is related to the decay
probability as P (t) = 1−⟨Ψ(t)|Ψ(t)⟩. Middle row: normalized population of the excited state
| ⟨e|Ψ(t)⟩ |2 = |c̄e|2. Lower row: Monte-Carlo simulations of the ensemble averaged population
of the excited state ρe;e obtained from different number (1, 10 and 1000) of realizations of
independent realizations. The thin black lines correspond to the exact solutions of the density
matrix equations [13,25]. Inset: configuration of the Gedanken experiment.

(iv) the propagation is interrupted by the quantum jump at time t1, which is determined by
the condition

P (t1) = 1− ⟨Ψ(t1)|Ψ(t1)⟩ = 1−
(
|cg(t1)|2 + |ce(t1)|2

)
= r1. (2.43)

The wavefunction is then projected onto the ground state according to

|Ψ(t+1 )⟩ =
σ̂ |Ψ(t1)⟩√

⟨Ψ(t1)| σ̂†σ̂ |Ψ(t)⟩
=

ce(t1) |g⟩
|ce(t1)|

≡ cg(t
+
1 ) |g⟩ . (2.44)

We then continue the simulation by using |Ψ(t+1 )⟩ as the initial condition for step (ii) and
follow the same procedure to determine the second quantum jump at time t = t2, and so
forth till reaching the desired final time tend.

In Fig. 2.5 we show single quantum trajectories for a two-level system driven by a classical
laser with Rabi frequency |Ω| = 5Γ and two different detunings ∆. The upper plots reveal
the time evolution of the square of the norm of the wavefunction |Ψ(t)⟩, ⟨Ψ(t)|Ψ(t)⟩ =
|cg(t)|2 + |ce(t)|2, along with the random numbers r1, r2, r3, ... and the corresponding jump
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times t1, t2, t3, ... . The middle plots of Fig. 2.5 show the normalized population of the excited
state,

| ⟨e|Ψ(t)⟩ |2 ≡ |c̄e(t)|2 =
|ce(t)|2

|cg(t)|2 + |ce(t)|2
.

Although we use the same Rabi frequency Ω in both cases shown in Fig. 2.5, the presence
of detuning, ∆ ̸= 0, decreases the population of the excited state |e⟩ and therefore slows the
buildup of the decay probability P (t) =

∫
dt′Γ|ce(t′)|2 between the quantum jumps. Due

to finite detuning ∆ ̸= 0 the atom feels an effective Rabi frequency Ωeff =
√
|Ω|2 + |∆/2|2

exhibiting faster oscillation. In the third row of Fiq. 2.5 we plot the populations of the
excited state ρe;e and the exact solution obtained in [13, 25], which verifies that the Monte-
Carlo technique can reproduce the density matrix with high accuracy when the number of
independent trajectories is large enough (in this example M = 1000).

2.2.3 Ensemble of interacting atoms

We can apply the QSW Monte-Carlo method to simulate the dynamics of N interacting
two-level atoms, see Eqs. (2.15), (2.16). The Hamiltonian of the system and the Linbland
operator L[ρ̂] are

HS =
N∑
i ̸=j

ℏJij σ̂†
i σ̂j (2.45)

L [ρ̂] =
N∑
i,j

Γij

[
σ̂iρ̂σ̂

†
j −

1

2

(
σ̂†
i σ̂j ρ̂+ ρ̂σ̂†

i σ̂j

)]
. (2.46)

For simplicity we did not include a driving field which can be easily added via extra terms
in the Hamiltonian. It is obvious that Eq. (2.46) is slightly different from the cases discussed
above and we cannot directly apply the Monte-Carlo technique. The projective operator,
first term in Eq. (2.46), acts on to two different atoms due to the collective decay character
of the system. But we can cast Eq. (2.46) in the standard form of Eq. (2.23) by diagonalizing
the Hermitian matrix Γij by a unitary transformation Vmi [23],

Γij =
N∑

n=1

Vinγn (Vnj)
† (i, j = 1, ..., N) , (2.47)

with eigenvalues γn ≥ 0, and defining the collective jump operators

Ŝn =
N∑
j=1

σ̂jVjn , (2.48)

which consist of a linear combination of single atomic operators σ̂. We substitute the last
two equations into Eq. (2.46) to obtain

L [ρ̂] =
N∑
n

γn

[
Ŝnρ̂Ŝ

†
n − 1

2

(
Ŝ†
nŜnρ̂+ ρ̂Ŝ†

nŜn

)]

≡
N∑
n

γnŜnρ̂Ŝ
†
n −

N∑
i,j

Γij
1

2

(
σ̂†
i σ̂j ρ̂+ ρ̂σ̂†

i σ̂j

)
.

(2.49)
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We can now write the effective Hamiltonian and the jump superoperator as

Heff =
N∑
i ̸=j

ℏJij σ̂†
i σ̂j − i

N∑
i,j

ℏ
1

2
Γij σ̂

†
i σ̂j , (2.50a)

Ljump [ρ̂] =
N∑
n

γnŜnρ̂Ŝ
†
n . (2.50b)

The superoperator written in the collective form shows that every quantum jump affects, in
general, all the atoms and thus every atom has a probability of decaying depending both
on the collective decay rates γn and the operators Ŝn. In other words, a quantum jump
projects the system to a superposition of states with one less excitation. It is evident that
when the atoms are placed far from each other rij ≫ λe the interaction is vanishing, and
the decay rates upon diagonalization become equal to single-atom spontaneous decay rates
γn → Γ while the lowering operators reduce to Ŝ → σ̂ with each channel n corresponding
to n-th atom. On the other hand, if the atoms are placed extremely close to each other
rij ≪ λe, all the decay rates are zero γn = 0 except for the channel with the fully symmetric
decay operator Ŝ+ =

∑
j σ̂j/

√
N which has the maximum decay rate γ+ = NΓ 1. This

corresponds to superradiance as was first discussed by Dicke in 1954 [1] who showed that in a
fully excited superradiant system, spontaneous emission takes place over a time scale inversely
proportional to the number of radiated atoms as the system decays through symmetric states,
and the highest decay rate ∝ N2 occurs when the system has N/2 excitations.

2.2.3.1 Numerical solutions for a pair of atoms

Consider now two interacting two-level atoms with interactomic distance r12. We diagonalize
the decay matrix Γij and obtain the collective decay channels with eigenvalues

γ1 = Γ + Γ12 and γ2 = Γ− Γ12 , (2.51)

and the corresponding the eigenvectors (collective jump operators)

Ŝ1 =
1√
2
(σ̂1 + σ̂2) and Ŝ2 =

1√
2
(σ̂1 − σ̂2) , (2.52)

that are linear combinations of the atomic lowering operators. We apply the Monte-Carlo
method via the following steps: (i) set the initial conditions |Ψ(t)⟩ = |ee⟩, (ii) draw the first
random number r1 ∈ [0, 1], (iii) propagate the atomic wavefunction

|Ψ(t)⟩ = cee(t) |ee⟩+ ce+g(t) |e+ g⟩+ ce−g(t) |e− g⟩+ cgg(t) |gg⟩ (2.53)

1Obviously, there cannot be higher decay rates because, no matter the basis, according to linear algebra
Tr[Γij ] = Tr[γn] = NΓ.
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with the Schrödinger equation using the effective Hamiltonian Heff for N = 2 given in
Eq. (2.50a), which yields the amplitude equations

ċee = −Γc̃ee (2.54a)

ċe+g =

[
−iJ12 −

1

2
(Γ + γ12)

]
ce+g (2.54b)

ċe−g =

[
iJ12 −

1

2
(Γ− γ12)

]
ce−g (2.54c)

ċgg = 0 . (2.54d)

(iv) The propagation is interrupted by the quantum jump at time t1, which is determined by
the condition P (t1) = 1−⟨Ψ(t1)|Ψ(t1)⟩ = r1. (v) Draw a random number q ∈ [0, 1] to decide
in which channel the jump occurred: q ∈ [0, p) corresponds to a jump in channel n = 1 and
q ∈ [p, 1] corresponds to a jump in decay channel n = 2, with p given by

p =
γ1||Ŝ1 |Ψ(t1)⟩ ||2∑

n=1,2 γn||Ŝn |Ψ(t1)⟩ ||2
. (2.55)

The wavefunction is then projected onto singly-excited state via channel n

|Ψ(t+1 )⟩ =
Ŝn |Ψ(t+1 )⟩√

⟨Ψ(t+1 )| Ŝ
†
nŜn |Ψ(t+1 )⟩

= ce±g(t
+
1 ) |e± g⟩ . (2.56)

We then continue the simulation by using |Ψ(t+1 )⟩ in step (ii) and follow the same procedure
to determine the second quantum jump at time t = t2 and reach the ground state |gg⟩.

ρee;ee
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Figure 2.6: Monte-Carlo simulation of time evolution of a pair of interacting atoms with
relative distance r12 = λe/4, dipole moment along the z-axis, ℘ = ℘ẑ, and initial conditions
ρ̂ee;ee(0) = 1. Graphs in column (a) depicts the case with the atoms placed along x-axis
(℘⊥r12) and graphs in column (b) are for atoms along the z-axis (℘ ∥ r12). In the first row
we plot the ensemble averaged population of the double excited state population and the
ground state population, while in the second the population of the single excited symmetric
and antisymmetric states obtained fromM = 10 (light blue and light red lines) andM = 1000
(blue and red lines) independent realizations of the quantum trajectories. The thin black lines
correspond to the exact solutions of the density matrix equations shown in Eq. 2.20.
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It turns out that the collective lowering operators Ŝ1,2 define two distinct paths and as
a result the double excited state can decay to the ground state by two sequential jumps via
either symmetric channel or antisymmetric channel. This is a special case for two atoms and
is due to the fact that the non-Hermitian effective Hamiltonian Heff

1 and the collective decay
matrix Γij have simultanously the same (right) eigenvectors, which does not hold true for
N ≥ 3. We will discuss this interesting feature in more detail in Chapter 4.

Figure 2.6 shows the results of Monte-Carlo simulations of the dynamics of two interact-
ing atoms placed at a distance r12 = λe/4 and compares them with the exact solution of
the density matrix derived in Sec. 2.1.1 (see Fig. 2.2). These results verify that for many
(M = 1000) independent realizations of quantum trajectories the ensemble averaged results
are indistinguishable from the exact ones obtained from the solution of the density matrix
equations. In the case of M = 10 realizations we get an approximate solution for the density
matrix.

1The solution of the eigenvalue problem Heff |Ψ⟩ = ℏλn |Ψ⟩ results in 2N generally nonorthogonal right-
eigenstates with complex eigenvalues λn. The real part of each eigenvalue Re(λn) = δn determines the level
shift δn of the corresponding eigenstate from the single-atom resonance, while the imaginary part Im(λn) =
−γ̃n yields the level width γ̃n of the eigenstate [4].
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Chapter 3

Enhanced Optical Cross Section

The purpose of this chapter is to demonstrate the capabilities of spatially-periodic atomic
ensembles to dramatically increase the strength of the light-matter interaction at the single-
photon level. For a single atomic dipole in free-space the excitation probability does not
exceed 10% [26] and is typically limited by the focusing strength of the lens [26]. However
the excitation probability can be further enhanced using cavities or waveguides achieving the
celebrated strong coupling regime associated with cavity QED [27, 28]. Here, we replace the
single dipole with an ensemble of identical dipoles aiming to take advantage of the strong
dipole-dipole interactions (multiple scattering) that leads to a collective response resulting in
enhanced (superradiance) or reduced (subradiance) scattering rates [8]. In the first section, we
present the single excitation approximation, underline its limitations and explain how these
affect our approach to the problem. In the second section, we explore the collective behavior of
atoms in perfect two-dimensional lattices and examine their capabilities in reflecting, focusing
and deflecting an incoming single photon in a Gaussian mode.

3.1 Single excitation approximation

In this approximation we assume the atomic ensemble can contain only one excitation dis-
tributed in N atoms at a time. Physically this means that the system is driven by a weak
laser field or a wavepacket that contains at most one photon. Multiple excitations of small
atomic ensembles will be considered in Chapter 4. The single-excitation assumption allows
us to truncate the exponentially large Hilbert space of dimension 2N for N two-levels atoms
to a much smaller subspace of dimension N+1 that allows us to consider many atoms N ≫ 1.

3.1.1 Atoms

ConsiderN ≫ 1 two-level atoms with the ground state |g⟩ and the excited state |e⟩ interacting
with a weak (quantum) field E(r) on the dipole transition |g⟩ → |e⟩. The Hamiltonian of
the system is [4]

H =
∑
k

ℏωkâ
†
kâk +

N∑
j=1

ℏωeσ̂
†
j σ̂j −

N∑
j

[
℘ ·E(rj)σ̂

†
j +H.c.

]
, (3.1)

where we set the energy of the ground state to zero, ℏωe = ℏωeg, and made the RWA for
atom-field coupling. We will take advantage of the results obtained through the derivation of

21
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the master equation in Sec. 2.1 by eliminating the vacuum modes of the radiation field and
making use of the effective Hamiltonian given in Eq. (2.16a).

Considering a single atomic excitation, the state vector can be expanded as

|Ψ⟩ =
N∑
j

bj |ej⟩+ C |G⟩ , (3.2)

where |G⟩ ≡ |g1, g2, g3, ..., gN ⟩ is the collective ground state of the atoms, and |ej⟩ ≡ |g1, g2
, ..., ej , ... , gN ⟩ denote the states with atom j excited and all the other atoms in the ground
state. The state vector in Eq. (3.2) evolves in time according to the Schrödinger equation
∂t |Ψ⟩ = −(i/ℏ)Heff |Ψ⟩, leading to the atomic amplitude equations

Ċ =
N∑
j

iΩ∗
je

−ik·rjbj , (3.3a)

ḃj =

(
i∆− 1

2
Γ

)
bj −

1

2

∑
i ̸=j

Fijbi + iΩje
ik·rjC , (3.3b)

where Ωj is the Rabi frequency of an incoming photon in the selected kth mode with frequency
ω and detuned by ∆ = ω − ωe at the position rj of jth atom, and Fij = Γij + i2Jij is the
complex dipole-dipole exchange interaction between the atoms given in Eq. (2.9) and (2.11).
Since we are interested in the weak driving regime, the atomic system remains mainly to
its collective ground state and rarely decays from the excited state via quantum jumps,
which allows us to solve the amplitude equations without applying the jump superoperator
of Chapter 2. The amplitude equations then yield

Ċ ≃ 0 ⇒ C ≃ 1, (3.4a)

ḃj =

(
i∆− 1

2
Γ

)
bj −

1

2

∑
i ̸=j

Fijbi + iΩje
ik·rj . (3.4b)

In the steady state ḃj = 0 we have a linear system of equations for amplitudes bj :(
i∆− 1

2
Γ

)
bj −

1

2

∑
n̸=m

Fijbi = −iΩje
ik·rj . (3.5a)

3.1.2 Incoming beam

The above theory is applicable to any weak incoming field, and we shall assume a Gaussian
beam with wave vector k||ẑ. Other than their simplicity and connection with experimental
applications, Gaussiam beams are very important for the construction of mirrors and lenses
via atomic ensembles [8, 12] as discussed below.

A Gaussian mode with waist w0 at z = 0 has the form

EG (x, y, z)

E0
=

w0

w(z)
e
−x2+y2

w2(z) ei(kz−atan(z/zR))e
−ik x2+y2

2R(z) (3.6)

where the first exponent represents the transverse amplitude, the second exponent contains
for longitudinal and Gouy phase, and the last exponent contains the radial phase of the beam,
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zR = πw2
0/λ0 denotes the Rayleigh length, and

w2(z) = w2
0

[
1 +

(
λ0z

πw2
0

)2
]
= w2

0

[
1 +

(
z

zR

)2
]
, (3.7a)

R(z) = z

[
1 +

(
πw2

0

λ0z

)2
]
= z

[
1 +

(zR
z

)2]
, (3.7b)

are the beam waist and radius of curvature of the phase front at different z. Note that the
Gaussian beam in the far-field z ≫ zR approaches a dipole field.

3.1.3 Radiated field

The field at position r = rj +Rj radiated by a dipole ℘ placed at rj has the form [17]

Edip(r) =
k20
ϵ0

G(Rj , ω0)℘

=
k20
ϵ0

eik0Rj

4πRj

[(
R̂j × ℘

)
× R̂j +

(
1

k20R
2
j

− i

k0Rj

)(
3R̂j

(
R̂j · ℘

)
− ℘

)]
,

(3.8)

where the first term in brackets denotes the polarization ê = (R̂j × ℘̂) × R̂j of the field in
the far-field zone with ê ⊥ k0. The operator for the field produced by an atom is related to
the atomic lowering operator as [10]

Êj(r) =
k2e
ϵ0

G(Rj , ωe)℘ σ̂j , (3.9)

while the expectation value for the radiated field is given by

Ej(r) = Tr
[
ρÊj(r)

]
=

k2e
ϵ0

G(Rj , ω0)℘ ⟨σ̂j⟩ . (3.10)

Consequently, the total field emitted by an atomic ensemble is

E(r) =
∑
j

Ej(r) =
k2e
ϵ0

∑
j

G(Rj , ωe)℘ ⟨σ̂j⟩ . (3.11)

In single excitation regime, the expectation values of the atomic operators are ⟨σ̂j⟩ = bjC
∗ ≃

bj , and therefore the far-field Eq. (3.11) is

E(r) = ê
℘k2e
4πϵ0

eiker

r

∑
j

bje
−ikerj , (3.12)

where ke ≡ ker̂, and we used the far-field approximation Rj = |r− rj | ≃ r for the amplitude
and Rj = |r − rj | ≃ r − (r · rj)/r for the phase.
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3.2 Collective response of spatially-periodic atomic ensembles

The collective response of two-dimensional atomic arrays interacting with incoming weak laser
field was first presented by Bettles et al. [8] through numerical results, while Shahmoon [9]
derived analytical formulae shading more light to the phenomenon. In this section, we show
that 2D atomic arrays with subwavelenth interatomic distance can exhibit great variation in
transmission and reflection of the probe field depending on their geometry. We explore the
collective behavior for various configurations (random, square and triangular lattices) and
present their performance both for continuous and pulsed schemes.

3.2.1 Single dipole

We begin with a simple example of a two-level atom interacting with the incoming Gaussian
beam propagation along axis k||ẑ. The atomic dipole is driven by the total electric field and
in the weak driving regime is given by

℘j = α(ω)E(rj) , (3.13)

where α(ω) is the atomic polarizability given in the linear and isotropic regime by1 [8,9,16]

α(ω) = −6πϵ0
k3e

1

2∆/Γ + i
, (3.14)

which is applicable when |∆| = |ω − ωe| ≪ ωe. To examine the extinction of the incoming
resonant Gaussian beam by the field of a single atom, we calculate the total far-field of
Eqs. (3.6)(3.8) on z axis

Etot(z) = Edip(z) +Einc(z) ≃ i
3E0e

ikez

2kz

[
1− sgn(z)

k2ew
2
0

3

]
ê , (3.15)

where sgn(z) is the sign of z and ê is the field polarization. This equation reveals that these
fields can cancel each other in the +z direction, while interfering constructively in the −z
direction, provided the condition w2

0 ≃ 3/k2e = (0.276λe)
2 is satisfied.

In Fig. 3.1 we plot the real and the imaginary part of the total field in Eq. (3.15) for a
Gaussian field with waist w0 = 0.276λe showing how the incoming and the scattered fields
interfere constructively and destructively in the backward and forward direction, respectively.
Note that in the backward direction only the imaginary parts are in phase creating thus a
standing wave.

3.2.2 Many interacting dipoles

The case of many atoms N is more involved since now the local field experienced by each
atom is the sum of the external probe field and the fields scattered by the other N −1 atoms,
namely

E(rj) = Einc(rj) +
N∑
i ̸=j

Ei(rj) . (3.16)

1Generally, polarizability is a tensor, but for simplicity is taken as scalar/isotropic and identical for all the
atoms
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Figure 3.1: Numerical simulation
of the total field emitted by a single
atom driven by a Gaussian mode
with w0 = 0.276λe. Upper panel
shows the real part of incoming
(red), atomic (blue) and total field
(black), while lower panel shows
the respective imaginary parts on
z-axis (x, y = 0). Real parts inter-
fere destructively in both directions
while imaginary parts interfere con-
structively in the backward and de-
structively in the forward direction.

We substitute the above equation into Eq. (3.13) obtain the dipole moment for every atom

℘j = α(ω)

[
Einc(rj) +

N∑
i ̸=j

Ei(rj)

]
= α(ω)

[
Einc(rj) +

N∑
i ̸=j

k2e
ϵ0

G(rji, ωe)℘i

]
. (3.17)

The last equation can be solved numerically for modest N with arbitrary dipole positions
and driving fields [29]. For atoms placed in infinite, defect-free lattices (square, triangular,
hexagonal etc) one can also derive self-consistent analytic solutions [9]. We perform numerical
studies aiming to examine finite and inhomogeneous atomic systems.

We can characterize the optical cross section by the percentage of the transmitted power,
the smaller is the transmission the larger is the cross section. To measure the transmission,
we calculate the total power passing through a finite surface (e.g. lens) on the right of it.
The power is given by integrating the Poynting over a surface,

P =
ϵ0c

2

2

∫
S
Re [E ×B∗] · dS , (3.18)

where B = ke × E/c is the magnetic field and E is the electric field of a beam with wave
vector k, and dS = dSẑ is the surface differential area element. In our simulations we use
a disk surface with radius R = 100λe, placed at z = 150λe centered at (x, y) = (0, 0). We
define transmission T = P/P0 as the ratio of the powers passing through the surface in the
presence (P ) and absence (P0) of the dipoles. Alternatively, we can calculate the transmission,
reflection and scattering by counting the rates of photons emitted in the incident Gaussian
mode in the forward and backward direction as described in Appendix A and in ref. [30].

In the case of dilute atomic ensembles, every atom is driven only by the external field
since dipole-dipole interaction falls off with distance as 1/(kerij). Consequently, the total
cross section is simply the sum of N independent two-level atoms and the transmission is
governed by the density of the ensemble

Tind = e−σindD2D (3.19)

where σind = σ0/[1+(2∆/Γ)2] with σ0 = 3λ2
e/(2π) being the resonant cross section of a single

atom and D2D is the density of the two dimensional atomic cloud. This equation is similar to
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Figure 3.2: Transmission of a resonant (∆ = 0)
Gaussian mode through a random 2D cloud of
N = 150 interacting atoms versus the density
of the cloud. As the atomic density D2D in-
creases the transmission through the interacting
monolayer (blue line) deviates from that for non-
interacting dipoles (dotted line). Each data point
is averaged over 200 realizations. Transmission
T = P/P0 is calculated using the power on a disk
with radius R = 100λe, at z = 150λe and centered
at (x, y) = (0, 0). We assumed a circularly polar-
ized ê = (x̂+iŷ)/

√
2 beam with waist w0 = 2.5λe

passing through the atomic layer at z = 0.

Beer–Lambert–Bouguer law relating the light attenuation to the properties of the material
through which the light is traveling.

Figure 3.2 shows the transmission of a resonant (∆ = 0) continuous–wave Gaussian
beam passing through a two dimensional monolayer of uniformly randomly distributed in-
teracting atoms (blue line). The same graph also includes the two dimensional limit of the
celebrated Beer–Lambert–Bouguer law (black dotted line), Eq. (3.19), corresponding to the
case of non-interacting atoms. This figure reveals that as the density of the ensemble is
increased the transmission deviated significantly form the non-interacting value. This is due
to the fact that dipole–dipole interactions introduce large frequency shifts and also affect the
decay rate of collective states leading to a broadening and suppression of the overall absorp-
tion line shape, reducing the resonant extinction (increasing transmission) [8]. One may then
mistakenly assume that placing interacting dipoles close to each other can only decrease the
cross section, which is, however, not the case, as we explain below.

3.2.2.1 Ordered arrays of atoms

Bettles et al. [8] have shown that putting atoms in spatially ordered configuration, i.e. con-
fining them in triangular or square lattices with small interatomic separations, can lead to
transmission values much smaller than those obtained from random ensembles. The light
attenuation and the collective cross-section exhibit resonant enhancement with the position
of the resonance depending on the lattice constant. In Fig. 3.3 we present the power trans-
mission of a resonant (∆ = 0) continuous–wave Gaussian beam through the square and
triangular arrays of atoms with various lattice constants. The graphs reveal the existence
of magic distances between atoms that can behave as perfect mirrors for resonant light by
achieving almost zero transmission and total reflection, with very little scattering. For square
lattice we find that lattice constants d = 0.2λe and d = 0.79λe achieve the best performance
(T ∼ 0), while for triangular lattice we have d = 0.21λe and d = 0.87λe. Although we refer
to these lattice constants as magic distances, Shahmoon et al. [9] have presented analytical
solutions and showed that for these distances collective resonances have zero frequency shift.
Thus, the incoming resonant field couples and drives these states that produce the same field
π out of phase. Another result is that the atomic arrays have interesting features mainly
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Figure 3.3: Resonant (∆ = 0) optical power transmission and reflection of a Gaussian mode
through (a) square and (b) triangular 2D arrays of N = 252 interacting atoms. Square lattice
behaves like a perfect mirror for lattice constants d = 0.2λe and d = 0.79λe, while triangular
lattice reveal its best performance for d = 0.21λe and d = 0.87λe. When the lattice constant is
larger than the resonant wavelength d > λe light is mainly transmitted and scattered but not
reflected due to small dipole–dipole interaction and spontaneous emission. We also plot the
transmission value T = P/P0 (black dotted line) obtained using Eq. (3.18) proving that both
methods are in very good agreement. We assumed a circularly polarized ê = (x̂ + iŷ)/

√
2

beam with waist w0 = 2.5λe passing thought the atomic layer at z = 0.

for subwavelength lattice constants where the dipole–dipole interaction is strong enough to
create distinct eigenstates with subradiant and superradiant decay rates. On the other hand,
when the lattice constant is larger than the resonant wavelength d > λe light is mainly trans-
mitted and scattered but not reflected due to small dipole–dipole interaction and spontaneous
emission in 4π solid angle. Another issue that has not yet been studied is the profile of the
incoming field to match with corresponding atomic wavefunction: If these two wavefunctions
do not fully overlap, the field will eventually interact with a superposition of collective atomic
eigenstates.

In Fig. 3.4(a)-(c) we explore the collective eigenstates of the non-Hermitian Hamiltonian
Heff that have the largest overlap with the spatial profile of the incident field. Figure 3.4(a)
shows the frequency shift of the most mode-matched atomic eigenstates in triangular lattice
versus lattice constant and number of atoms, Fig 3.4(b) shows the line shape width of the
same states, and Fig. 3.4(c) shows the overlap between the atomic eigenstate |ΨAtom⟩ and
profile of the incoming Gaussian field. Although Bettles et al. [8] stated that extinction cross
section (1 − T ) scales inversely with linewidth and that subradiance results in an enhanced
extinction, we find that superradiant states can achieve large extinction cross section if they
overlap strongly with the incoming bosonic mode. In Fig. 3.4(d) we plot the transmission,
reflection and scattering of a superradiant state with ΓAtom = 1.7Γ. Hence, we are mainly in-
terested in tuning the driving laser to eigenstates that have large overlap with the field profile.
However, atoms placed in triangular lattice with period d = 0.87λe create a perfect mirror
and achieve extinction of (1−T ) ≃ 0.01 for resonant incoming light despite the poor overlap
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Figure 3.4: Characteristics of atomic eigenstates in triangular lattice with the largest overlap
with the incoming Gaussian mode for various lattice constant and number of atoms (top
panels), and transmission, reflection and scattering spectra for different triangular and square
lattices (bottom panels). The top graphs shown the collective frequency shift ∆Atom (a), the
width ΓAtom (b) and the overlap between the atomic wavefunction |ΨAtom⟩ and the profile
of the incoming Gaussian beam (c) focused at z = 0 with w0 = 2.5λe. The black dots refer
to the most overlapping eigenstate of a triangular lattice with N = 252 atoms and lattice
period d = 0.87λe having almost zero collective frequency shift ∆Atom = 0.007Γ, small line
shape width ΓAtom = 0.37Γ and overlap | ⟨ΨAtom|ΨGauss⟩ |2 = 0.4. The lower graphs show the
transmission (blue), reflection (red) and scattering (grey) for two different lattice constants
of triangular lattice (d) and (e), and square lattice (f) and (g).

between the atomic wavefunction and the field profile ≃ 0.4. To explain this response, we
examined atomic eigenstates and we found that the five most mode-matched eigenstates, with
total overlap with the bosonic mode ∼ 0.99, have almost the same linewidth ΓAtom ≃ 0.37Γ
and they are almost zero detuned from the atomic frequency ωe. Hence, we conclude that the
incoming field does not couple to a single atomic eigenstate but to a superposition of these
five states.

The second row in Fig. 3.4 shows the optical transmission, reflection and scattering versus
laser detuning for two cases (d),(e) of triangular lattice, and two cases (f),(g) of square lattice.
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Although all of the four cases presented in Fig. 3.4 have large extinction cross section, square
lattice with period d = 0.67λe exhibits nearly perfect reflection into the same Gaussian mode
with zero scattering to other modes. Note that the presented results apply to finite but
perfect arrays (atoms remain exactly at lattice sites and the arrays are 100% filled), but the
performance of the system deteriorates as the density of defects (missing atoms) or atomic
position uncertainty (shallow lattice) is increased, which has been verified numerically [8] and
experimentally [12].

3.2.2.2 Inhomogeneous atomic arrays

So far we have examined atoms with the same resonant frequency ωe, but as we show below,
by changing slightly the resonance of every atom one can further increase optical cross section
of atomic array for incoming Gaussian beams and create focusing lenses using flat atomic
arrays. We thus allow a spatial variation of the resonant frequency and thereby the detuning
∆j for each atom j. Equation (3.5a) is now modified as(

i∆j −
1

2
Γ

)
bj −

1

2

∑
j ̸=i

Fijbi = −iΩje
ik·rj , (3.20)

and can be solved the same way as before. Different frequency shift can be introduced in each
lattice site by applying a non-uniform (space dependent) electric or magnetic fields taking
advantage of the Stark or Zeeman effects [31,32].

To achieve fully destructive interference and cancellation between the incoming field and
the field scattered from the atomic array, the two fields must have the same angular distribu-
tion in the far-field, the same polarization, and a phase difference δϕ = π. We determined that
even in the cases with very low transmission, the two fields might have the same amplitude
but their phase difference at z = 0 was slightly different from π/2 and had a Gaussian-like
distribution. In order to achieve spatially uniform phase difference, we introduce a Gaussian
detuning pattern with each atom having a detuning

∆G
j (xj , yj)

Γ
= α− βf(xj , yj), (3.21)

where α is a constant that shifts the transmission deep (or reflection peak), β is a multiplying
factor which defines the strength of detuning function f(xj , yj), and

f(xj , yj) = 1− exp

[
−
x2j + y2j
(ηw0)2

]
, (3.22)

where (xj , yj) coordinates of the j-th atom, and η is a fine-tuning degree of freedom. We apply
Eq. (3.21) to a triangular lattice of N = 122 atoms with lattice constant d = 0.87λe, using
α = 6.1 · 10−3 , β = 0.1 and η = 1.704, and achieve a reduction of transmission coefficient by
three orders of magnitude (T ∼ 10−8), an increase of reflection, in the same Gaussian mode,
close to unity (∼ 0.99998), and extinction of scattering into all other modes. Figure 3.5
shows the transmission, reflection and scattering coefficients versus frequency detuning of
the above configuration (a) without and (b) with Gaussian detuning pattern. The insets
reveal the precise minimum and maximum value of transmission and reflection coefficients,
respectively. In another inset we plot the phase arg (bn) of each quantum emitter obtained
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Figure 3.5: Transmission (blue), reflection (red) and scattering (gray) spectra from a trian-
gular lattice of atoms without (a) and with (b) Gaussian detuning pattern given by Eq. (3.21)
using the parameters α = 6.1 · 10−3 , β = 0.1 and η = 1.704. Insets in both graphs reveal
the minimum and maximum value of transmission and reflection, respectively, and the phase
of the amplitude of each atom in steady state driven by resonant light (∆ = 0). Comparing
the two graphs becomes clear that Gaussian detuning pattern creates a uniform phase π/2 in
whole array achieving thus almost perfect reflection along with zero transmission and scat-
tering in the far-field. For the chosen set of parameters, the transmission deep and reflection
peak are shifted to resonant frequency. In the simulations we used an array of N = 122 atoms
with lattice period d = 0.87λ and applied a Gaussian beam with w0 = 2.5λe.

upon solving the Schödinger equation for resonant light which verifies that we may achieve
uniform phase among all quantum emitters equal to π/2 with the parameters suggested above.
The parameters have been chosen to also shift transmission deep and reflection peak to zero
detuning. We applied various Gaussian detuning patterns to several configurations and we
achieved much better performance than without applying them.

We next consider the possibility of creating focusing lenses and apply parabolic detuning
pattern to atomic arrays,

∆Par
j (xj , yj) = δ

x2j + y2j
λ2
e

, (3.23)

where δ defines lens strength, in other words larger δ leads to shorter focus distance and
smaller beam waist. The array with parabolic pattern radiates a Gaussian beam focused at
distance zf ≤ zR/2 and beam waist w̃0 ≤ w0. In Fig. 3.6 we plot the focused beam waist
w̃0 and the focus distance zf of the Gaussian mode radiated from triangular atomic array.
The graphs show that we can both reflect and focus the incoming Gaussian beam, however
the tighter we focus the beam the lower is the reflectivity of the array due to the difference
between the incoming and dipole radiated fields. The focusing distance achievable in this way
is limited by diffraction zf ≤ zR/2, as obtained numerically in Fig. 3.6(b) and analytically
proven in [33]. We can put two of such flat arrays with parabolic detuning and create an
optical cavity with length 2zf . This can be advantageous that these arrays are flat because
it is experimentally challenging to place atoms in curved lattices.
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Figure 3.6: Characteristics of a Gaussian beam radiated from triangular array of atoms
with parabolic detuning pattern ∆Par

j = δ(x2j + y2j )/λe induced by an incoming Gaussian
field with w0 and zR. In (a) we show the focus beam waist w̃0/w0, and in (b) we show the
focal distance zf/zR of the field radiated from the atomic array, calculated using all the field
terms (red), and using only the far-field term (blue) revealing a small, expected deviation
when beam is tightly focused. The focusing distance achievable in this way is limited by
diffraction zf ≤ zR/2, as shown in (b). Inset shows the normalized intensity of the radiated
field for δ ≃ 0.15Γ, see also data points enclosed in dashed boxes. For the simulation we used
triangular lattice with period d = 0.87λe and N = 122 atoms driven by a Gaussian mode
with waist w0 = 2.5λ at the atomic array.

The next step is to apply two different detuning profiles ∆±
j (xj , yj) that can deflect

the incoming beam into two different angles θ±, see Fig. 3.7(a). Our aim is to determine
the detuning profiles ∆±

n and the corresponding radiated fields E±
dip resulting in total fields

E±
tot = Einc + E±

dip that have small overlap, at least in the forward direction. To that end,
we apply linear detuning pattern along x-axis

∆±
j (xj , yj) = ±δ

xj
d

, (3.24)

where d is the lattice constant, and δ defines the detuning pattern inclination. Figure 3.7(b)
shows the overlap between the angular distributions of the two fields in the far-field, calculated
via

ξf =
|
∫ 2π
ϕ=0

∫ π/2
θ=0 E

+
totE

−
tot sin θdθdϕ |[∫ 2π

ϕ=0

∫ π/2
θ=0 |E

+
tot|2 sin θdθdϕ

]1/2 [∫ 2π
ϕ=0

∫ π/2
θ=0 |E

−
tot|2 sin θdθdϕ

]1/2 (3.25a)

ξb =
|
∫ 2π
ϕ=0

∫ 2π
θ=π/2E

+
totE

−
tot sin θdθdϕ |[∫ 2π

ϕ=0

∫ 2π
θ=π/2 |E

+
tot|2 sin θdθdϕ

]1/2 [∫ 2π
ϕ=0

∫ 2π
θ=π/2 |E

−
tot|2 sin θdθdϕ

]1/2 (3.25b)

in the forward and backward direction, respectively. Figure 3.7(b) reveals that the two linear
detunings can lead to two different fields which, however, are not fully distinguishable and
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Figure 3.7: (a) Schematic illustration of the incident Gaussian beam (green) without the
atomic array, total field created by the incident beam and the atomic array with the detuning
pattern ∆+

n (blue), and the total field when the detuning pattern ∆−
n (red). (b) Overlap in

the forward (red) and backward (blue) direction between the two total fields created due to
incident beam on triangular atomic array with detuning pattern ∆±

n . Right axis shows how
distinguishable D = 1 − ξ the two modes are. For the simulation we used triangular lattice
with period d = 0.87λe and N = 252 atoms driven by a Gaussian mode with waist w0 = 5λe

at the atomic array.

their overlap remains finite. The optimal detuning occurs for δ = 0.064Γ where the forward
overlap is ξf = 0.6 and the backward ξb = 0.52. We have tried several detuning profiles,
such as cubic, shifted parabolic and spherical, and sawtooth, but have not achieved better
distinguishability.

Due to the symmetry of our system, the total power radiated from the atomic array
is equally divided between the forward and backward directions which precludes achieving
exotic radiation patters. This restriction can be overcome by breaking the symmetry using
two or more layers of atoms that create a bilayer or trilayer of atoms [34,35]. We finally note
that, as is well known from antenna engineering, one can control the radiation patterns by
changing the phases and the amplitudes of every emitter [36,37]. Similarly, Grankin et al. [34]
and Guimond et al. [35] have suggested preparation of single excited states that match the
phase front and the amplitude profile of the desired modes.

3.2.3 Pulsed fields

In the previous section we studied atomic arrays driven by a weak continuous-wave field,
exhibiting remarkable performance in transmission, reflection and focusing of the incoming
beam. Here we show that atomic arrays driven by time-dependent pulsed fields retain these
capabilities but with lower efficiency.

We assume a Gaussian wavepacket ∼ exp(− t2

2τ2
) od duraton τ containing less than one

photon on average and solve the time dependent Eqs. (3.4) to calculate the total transmission,
reflection and scattering as the integral of their time dependent values. In Fig. 3.8 we plot
these coefficients for a triangular lattice of N = 252 interacting atoms in the pulsed regime,
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versus lattice constant d of triangular lattice driven by Gaussian wavepacket with duration
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using the same wavepacket on a triangular lattice with constant d = 0.87λe. For compar-
ison, continuous wave results (dashed lines) are plotted in both graphs, revealing that in
pulsed scheme transmission and reflection coefficients deteriorate while scattering is mainly
enhanced. For the simulations, the incoming Gaussian pulse is ∼ exp(− t2

2τ2
) and we also

assumed Gaussian spatial distribution with waist w0 = 2.5λe at the array.

along with the respective coefficients obtained for the continuous wave driving, revealing the
lower efficiency in transmission cancellation and reflection into the same mode. Figure 3.8(a)
shows that the large atomic array with lattice constant d = 0.87λe transmits less than 15%
and reflects ∼ 65% of the incoming field back to the same mode, while the remaining 20% is
scattered to all the other modes. The enhancement of scattering at the expense of reflection
and transmission blocking in the pulsed regime, as compared to continuous wave regime, is
evident for all the lattice constants. Figure 3.8(b) verifies that for detuning away from atomic
resonance atomic arrays driven by pulses behave similarly to continuous wave scheme but
with lower efficiency.

In Fig. 3.9 we illustrate the temporal response of an atomic array driven by long and
short Gaussian pulses. This figure reveals a finite time response of the atomic arrays to the
incoming pulses, which follows from Eqs. (3.3) and should be contrasted with the steady-state
solutions for a continuous-wave field. For short pulses, the delayed atomic response reduces
further the transmission cancellation and reflection of of the probe pulse and increases the
light scattering, since the destructive/constructive interference of the incoming and generated
by the atom fields is incomplete. For instance, in Fig. 3.9(a) we obtain total (time integrated)
transmission 7.74%, reflection 69.82% and scattering 22.44%, while in Fig. 3.9(b) we have
total transmission 22.44%, reflection 35.22% and scattering 42.34%. Another interesting
feature shown in Fig. 3.9 is that transmission, reflection and scattering rates are affected
by the pulse shape and have in general temporal shapes different from each other and the
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incoming pulse shape, especially for shorter pulses in the transient regime when the system
does not have sufficient time to follow the steady-state response. We conclude that short
pulses are mainly scattered and reflected, while longer pulses asymptotically approach the
continuous wave regime. The main characteristics mentioned above remained for all the types
of pulses we have investigated, namely: sech, renctangular, Lorentzian and sinc.
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Multiple Excitations

In this chapter we consider small ensembles of closely–spaced atoms driven by strong co-
herent laser radiation, and allow multiple excitations of the atomic ensembles. Unlike the
previous chapter, we do not truncate the Hilbert space of the system to a single or a few
excitation subspace, which permits us to examine the nonlinear regime of the cooperative
atom–light interaction. We make use of QSW Monte–Carlo approach to study superradiant
and subradiant emission of the photons and calculate their correlations revealing non-classical
light radiation, such as photon bunching and antibunching. First, we explore the radiation
properties of a driven pair of atoms along with anlytical treatment. Then we examine the
radiation properties of three atoms considering various geometries of the atomic positions.

4.1 Pair of atoms

Consider two closely–spaced atoms, with interatomic distance r12 ≪ λe, driven by a laser
field with wave vector kc and resonant frequency ωc ∼ ωeg. The coupling strength of the laser
field E with the pair of atoms is expressed by its Rabi frequencies Ω+ on the transisitions
|gg⟩ −→ |+⟩ and |+⟩ −→ |ee⟩, and ±Ω− on the transitions |gg⟩ −→ |−⟩ and |−⟩ −→ |ee⟩,
respectively. These Rabi frequencies are given by

Ω± =
Ω√
2

(
1± e−k·r12

)
, (4.1)

where Ω = ℘E/ℏ is the Rabi frequency of the field for a single isolated atom. Hence, in the
limit of small interatomic distances we can approximate Eq. (4.1) as

Ω+ ≃
√
2Ω , (4.2a)

Ω− ≃ i
√
2Ωζ cos(ϕ) , (4.2b)

where ζ = kr12 is the dimensionless distance and ϕ is the angle between vectors k and r12.
Thus, in the case of the driving field propagating perpendicular to the interatomic axis,
k⊥r12, Ω− vanishes, while in the case of the field propagating parallel to the interatomic
axis, k||r12, Ω− is maximized with ζ ≪ 1. In physical terms, the subradiant |gg⟩ −→ |−⟩
transition exhibits a quadrupolar behavior and dipole-moment suppression, due to destructive
interference of the two-atom interactions with the field, as opposed to their constructive
interference in the superradiant |gg⟩ −→ |+⟩ transition [38].

Consider a plane wave propagating with wave vector k⊥r12 where the antisymmetric path

35
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is forbidden and the symmetric path is driven with Rabi frequency Ω+ =
√
2Ω. We thus have

a three level system in ladder (Ξ) configuration with levels |gg⟩ , |e+ g⟩ , |ee⟩. We can get a
feeling of how this three-level system behaves by solving the Schrödinger equation using the
effective Hamiltonian. The amplitude equations, in the rotating frame, are given by [13]

ċgg = iΩ∗
1c+ , (4.3a)

ċ+ = (i∆1 − γ+)c+ + iΩ1cgg + iΩ∗
2cee , (4.3b)

ċee = [i(∆1 +∆2)− γee]cee + iΩ2c+ , (4.3c)

where we simplified the notation for the symmetric state |+⟩ ≡ |e+ g⟩, ∆1 = ωc − ω+gg and
∆2 = ωc − ω+ee are the detunings of the field from the corresponding atomic transitions,
Ω1 = Ω2 =

√
2Ω are the Rabi frequencies of each transition, and γ+ = (Γ + Γ12)/2 and

γee = Γ are the relaxation (decay) rates of every state. Assuming that intermediate state |+⟩
is not initially populated, c+(0) = 0, we can write Eq. (4.3b) in the integral form as

c+(t) = i

∫ t

0
dt′e(i∆1−γ+)(t′−t)

[
Ω1(t

′)cgg(t
′) + Ω∗

2(t
′)cee(t

′)
]
. (4.4)

If the Rabi frequencies Ω1,2 are smaller than |∆1,2| the amplitudes cgg(t
′) and cee(t

′) will not
change much while the exponent in Eq. (4.4) experiences many oscillations [13]. Another
reasonable assumption is the sufficiently slow change in time of Rabi frequencies Ω1,2, so that
they fulfill the condition |Ω̇i/Ωi| ≪ ∆i for all t′ ∈ [0, t], the terms in the square brackets of
Eq. (4.4) shall be evaluated at t = t′ and taken out of the integral [13]. The integration can
then be performed, and for times t ≫ 1/γ+ we obtain the approximate expression

c+(t) = −Ω1cgg +Ω∗
2cee

∆1 + iγ+
. (4.5)

Substituting Eq. (4.5) into Eq. (4.3a,c) for the amplitudes cgg and cee we have

ċgg = −i
|Ω1|2

∆1 + iγ+
cgg − i

Ω∗
1Ω

∗
2

∆1 + iγ+
cee , (4.6a)

ċee = i
(
∆1 +∆2 −

|Ω2|2

∆1 + iγ+
− γee

)
cee − i

Ω2Ω1

∆+ γ+
cgg . (4.6b)

Thus we have performed an adiabatic elimination of the intermediate excited state |+⟩,
obtaining coupled differential equations for the amplitudes of states |gg⟩ and |ee⟩. When
|∆1 +∆2| ≪ |∆1,2| and |∆1,2| ≫ γ+, |Ω1,2| Eqs. (4.6) reduce to

ċgg = −iZggcgg + iΩ∗
effcee , (4.7a)

ċee = −
[
i(Zee −∆1 −∆2) + γee

]
cee + iΩeffcgg , (4.7b)

where Zgg = |Ω1|2/∆1 and Zee = |Ω2|2/∆1 are the ac Stark shifts of levels |gg⟩ and |ee⟩, and
Ωeff = ieiatan(∆1/γ+)Ω1Ω2/∆1 ≃ −iΩ1Ω2/∆1 is the effective two-photon Rabi frequency for
the transition |gg⟩ −→ |ee⟩. We may shift the zero point energy of the system via applying
the transformation cgg,ee → cgg,eee

−iZggt and obtain

ċgg = iΩ∗
effcee , (4.8a)

ċee = (i∆eff − γee)cee + iΩeffcgg , (4.8b)
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Figure 4.1: Steady state emission rate and excitation spectra of a pair of atoms with
normalized interatomic distance kr12 = 0.4 along the x-axis driven by linearly polarized
continuous wave light with wave vector k⊥r12 with polarization ê = ẑ. (a) Emission rates
for various strengths of the incident field versus frequency detuning. (b) Number of excitations
for different incident fields, versus frequency. Graphs show that the pair of atoms can emit
and absorb photons only at resonance ∆ = 0 (double excited state) and at frequency equal
to symmetric collective shift ∆ = ∆12 (single excited symmetric state). When the driving
field is detuned by ∆ = ∆12 symmetric state is mainly populated emitting photons two times
faster compared to an isolated atom, revealing thus its superradiant behavior. Vertical dashed
lines show the transition frequencies between states in the frame rotating with the atomic
resonant frequency ωe, the number next to them shows the number of photons needed for
each transition and the color denotes transitions that include ground state |gg⟩ (dark purple)
and transitions that include double excited state |ee⟩ (light red). The height of vertical lines
does not contain information.

where ∆eff = Zgg − Zee − (∆1 + ∆2) the effective two-photon detuning, which in our case
reduces to ∆eff = 0 when the driving field is resonant ∆ = 0. Equations (4.8) refer to
an effective two-level two-photon transition model that admits analytical solution using the
density matrix formulation. We will return to these results and use them to explain some
features of the system.

Let us first examine the atomic decay rate and the number of excitations in the system.
The decay rate is defined as

RDecay =
N∑

n=1

γn ⟨Ŝ†
nŜn⟩ , (4.9)

while the number of excitations is given by

Ne =

N∑
j=1

⟨σ̂†
j σ̂j⟩ . (4.10)
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Recall that γn are the collective decay rates defined in Eq. (2.47) and Ŝn are the collec-
tive jump operators defined in Eq. (2.48). In Fig. 4.1 we show the emission rate and the
mean number of excitations vs frequency of the excitation laser for a pair of atoms with
dimensionless interatomic distance ker12 = 0.4x̂ driven by linearly polarized ê = ẑ plane
wave propagating along k||ŷ. These graphs reveal that perpendicularly driven pair of atoms
cannot absorb or emit photons through the antisymmetric state, which is now shifted to
∆ = −∆12 = 10.77Γ. The only way the antisymmetric state can be populated is via a
spontaneous quantum jump of the double excited state, but this probability is small and is
given by (Γ−Γ12)/Γ ≃ 0.01. Furthermore, when the incident field is resonant with the singly
excited symmetric state (∆ = ∆12) the atomic system can be excited to this state and then
decay two times faster than an isolated two-level atom. For instance, an incoming field with
Rabi frequency Ω = 0.5Γ can populate the single excited symmetric state |e+ g⟩ with proba-
bility 0.25 (Fig. 4.1(b) red line), and due to superradiant character this state will decay to the
ground state |gg⟩ with rate R ∼ 0.5Γ which is two times faster than for the two-level atom.
Another interesting point shown in Fig. 4.1 is the ability to populate the double excited state
by a two-photon processes. We can partially populate the double excited state by climbing
up the state ladder using the intermediate single excited symmetric state. To achieve this,
we must shine resonant light (∆ = 0) and apply strong enough Rabi frequency to have the
two-photon Rabi frequency Ωeff ∼ γee. Obviously, in a steady state the symmetric state is
also weakly excited leading to slightly higher emission rate than the case of double excited
independent atoms.

We are also interested in the statistics of the emitted photons and especially the corre-
lations between them because they can reveal whether the system radiates classical, chaotic
or non-classical light. To that end, we use the second order correlation function, assuming a
stationary radiated field [39]

g(2)(τ) =
⟨Ê†(0)Ê†(τ)Ê(τ)Ê(0)⟩

⟨Ê†Ê⟩2
=

⟨â†(0)â†(τ)â(τ)â(0)⟩
⟨â†â⟩2

, (4.11)

where τ is the time delay between two photon arrivals (or two clicks in the detectors), and
â† , â are the radiated bosonic creation and annihilation operators, respectively. This func-
tion quantifies the probability of detecting two photons with time delay τ between them.
Equation (4.11) gives g(2)(τ) in terms of bosonic field operators, however in our problem a
photon is emitted when a quantum jump occurs and thus we can write g(2)(τ) in terms of
the atomic operators

g(2)(τ) =

∑
mn γmγn ⟨Ŝ†

m(0)Ŝ†
n(τ)Ŝn(τ)Ŝm(0)⟩

|
∑

n γn ⟨Ŝ
†
nŜn⟩ |2

, (4.12)

where the denominator is analogous to the square of the radiated intensity. We calculate the
second order correlation function from many realizations of quantum trajectories using the
QSW Monte–Carlo technique of Section 2.2, and associating quantum jumps with radiated
photons. Note that in the case of photon emission by N independent two level systems the
photon-photon correlation at τ = 0 are

g2(0) =
N

N + 1
, (4.13)

and obviously g(2)(0) = 0 when N = 1.
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Figure 4.2: Second order correlation function of photons radiated by a pair of atoms with
normalized interatomic distance kr12 = 0.4 driven by linearly polarized continuous wave light
with wave vector k⊥r12. (a) Second order correlation function for zero time delay g(2)(τ = 0)
vs the excitation laser frequency for various Rabi frequencies Ω. (b) Second order correlation
function versus time delay τ for Rabi frequency Ω = Γ and detuning ∆ = 0. (c) Same as (b)
with Ω = Γ/5 but detuning ∆ = ∆12 = 10.77Γ. Results plotted in (b) and (c) were averaged
over M = 8000 realizations with the system evolved till times tend = 3000/Γ. Simulation
parameters are identical with the previous figure.

In Fig. 4.2 we show the correlation function of the photons emitted by a perpendicularly
driven pair of atoms with interatomic distance kr12 = 0.4. Figure 4.2(a) reveals that g(2)(0)
has larger values when the atomic system is driven close to resonance ∆ = 0, which means
that the atoms mainly radiate non-classical highly bunched photon pairs. For instance, for a
weak Rabi frequency Ω = 0.1Γ we obtain g(2)(0) ≃ 100. This can be understood by looking
at Fig. 4.1(b) where the emission rate in the weak driving regime is close to zero resulting to
even smaller denominator in Eq. (4.12). Moreover, for weak Rabi frequencies g(2)(0) has one
peak at ∆ = 0, however when the Rabi frequency becomes stronger the initial peak splits
into two unequal peaks which shift away from ∆ = 0 as Ω increases, creating thus a local
deep at two-photon resonant frequency.

To examine further the correlations of the emitted photons we calculate and plot g(2)(τ)
in Fig.4.2(b),(c). We now find that for ∆ = 0 and Ω = 1Γ, the pair of atoms radiates bunched
photons whose correlation exhibit oscillations and extends up to τ ≃ 2/Γ. The graph reveals
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Figure 4.3: Steady state emission rate and excitation spectra of a pair of atoms with nor-
malized interatomic distance kr12 = 0.4 driven by linearly polarized continuous wave light
with wave vector k||r12. (a) Emission rate versus detuning for various Rabi frequencies of
the incident field. (b) Number of excitations versus detuning for different Rabi frequencies.
Graphs show that for parallel driving the atomic pair can emit and absorb photons at reso-
nance ∆ = 0 (double excited state), at frequency equal to symmetric collective shift ∆ = ∆12

, and at frequency equal to antisymmetric collective shift ∆ = −∆12. When the driving field
is detuned by ∆ = −∆12 the antisymmetric state is mainly populated while emitting very
few photons compared to an isolated atom, revealing thus its subradiant behavior. Vertical
dashed lines are the same with those in Fig. 4.1. In the simulation, atoms were placed on
x-axis and the field was propagating along x-axis with polarization ê = ẑ.

the high possibility of detecting two photons almost together, g(2)(0) ≃ 5 > 1, and that there
are times τ > 0 at which the possibility of detecting the second photon peaks. The oscillation
period is equal to time needed for the transitions |gg⟩ −→ |e+ g⟩ and |e+ g⟩ −→ |ee⟩, namely

T =
π

Ω+

=
π√

|Ω+|2 + |∆12/2|2
, (4.14)

which in our case results in T = 0.56/Γ. Looking back to the two-level two-photon scheme
we understand that the first photon is emitted by the double excited state, then due to
superradiant single excited state the system has high probability of emitting a second photon
almost instantly after the first one. However, the atomic system may not jump right after
the first jump, the second jump may occur when the double excited state is again populated,
which leads to spontaneous decay at delays τ = qT with q = 1, 2, 3, .... On the other hand,
when the laser field is resonant with the symmetric single photon transition |gg⟩ −→ |e+ g⟩,
with Ω = Γ/5, we obtain a correlation function similar to a driven isolated atom which can
emit only one photon at a time and has to wait until excited state becomes populated again.
This is still a non-classical photon source emitting anti-bunched single photons, g(2)(0) ≤ 1.

We also consider the case when the incident plane wave field propagates parallel to inter-



4.1. Pair of atoms 41

Time τΓ Time τΓ

(2
)

g
7

5

4

3

2

1

0

6

0 1 2 3 4 5 6 0 10 20 5030 40

1.5

1

0.5

0

(2
)

g

(a) (b)

Figure 4.4: Second order correlation function of photons radiated by a pair of atoms with
normalized interatomic distance kr12 = 0.4 driven by linearly polarized continuous wave light
with wave vector k||r12. (a) second order correlation function versus time delay τ for Raby
frequency Ω = Γ and detuning ∆ = 0. (b) same with (a) with Ω = Γ/2 and detuning
∆ = −∆12 = −10.77Γ. Results plotted in (a) and (b) were averaged over M = 10000
realizations where the system evolved for times tend = 5000/Γ. Simulation parameters are
identical to the previous figure.

atomic distance vector r12 and show how the pair of atoms behaves in this case. According
to Eq. (4.1) the coupling strength between the ground state and the antisymmetric state is
non-zero |Ω−| = 0.28|Ω|, thus we expect a different behavior compared to the perpendicular
case. In Fig. 4.3 we plot the emission spectra and the mean excitation number for various
Rabi frequencies. The spectra for the decay rates are similar to those for the perpendicular
scheme in Fig. 4.1(a), with small changes due to smaller Rabi frequency Ω+. For weak Rabi
frequency the emission spectra exhibit a small bump at frequency ∆ = −∆12 due to the
excitation of the subradiant state, but when the Rabi frequency is large that bump is buried
under the tail of the emission caused by the double excited state. Looking at the excitation
spectra we see a third peak located precisely at the transition frequency between the ground
state |gg⟩ and the single excited subradiant state |e− g⟩. Due to its subradiant character,
this state has very small line width, and it can be populated or even saturated by very weak
Rabi frequencies, while the population at this state will jump to ground state very rarely
since γ− ≃ 0.01Γ. However, due to its weak coupling with the incoming field the system
need much longer time to reach a steady state. This is attested by the oscillations around
the subradiant peak in Fig.4.3(b) that reveal that the system did not reach the steady state,
although we let the system propagate for time tend = 400/Γ. Finally, this subradiant state
is an almost Dark state, which can used as a quantum memory for storing one photon for
much longer times (two orders of magnitude) compared to a conventional two-level system.

Regarding the photon statistics in the parallel scheme, we found that g(2)(0) is similar to
the perpendicular driving, which was expected because the only new feature was the ability to
excite the antisymmetric state that results in weak single photon emission. Figure 4.4 shows
the correlaion function of the radiated photons for (a) laser resonant with the two-photon
transition, and (b) laser resonant with the transition |gg⟩ −→ |e− g⟩ with ∆ = −∆12. The



42 Chapter 4

double excited state is excited mainly via the symmetric superradiant state due to its larger
coupling strength compared to antisymmetric state, leading to a similar g(2)(τ) with the
perpendicular driving. The system still radiates photon pairs with zero time delay between
them, g(2)(0) = 6.1. The oscillations have period T = 0.57/Γ and have the same explanation
as those in Fig. 4.2(b). On the other hand, when the incident laser resonantly excites the
antisymmetric state the system emits only one photon at a time. Figure 4.4(b) reveals that
the system behaves as a slowly-driven slowly-decaying two-level atom with g(2)(0) ≃ 0, in
other words the system radiates antibunched photons. Due to the combination of weak Rabi
frequency Ω− and small decay rate γ− of the subradiant state, g(2)(τ) oscillates with period
T = 44/Γ and the emitted photons remain correlated for long times ∼ 100/Γ.

4.2 Three atoms

We now investigate the response of three atoms driven by a coherent laser. Although we
just add one more atom, the system becomes richer and much more complicated. Other
than the larger Hilbert space and the increase in the possible transitions, the most important
feature is that the non-Hermitian effective Hamiltonian Heff in Eq. (2.50a) does not have the
same right-eigenvectors with matrix Γij in Eq. (2.47), as it used to have in the case of two
atoms. In other words, no matter in what state the system is, eigenstate or superposition of
eigenstates, when a quantum jump occurs the system will be projected to a superposition of
all the eigenstates with one less excitation.

4.2.1 Chain configuration

We begin by solving the eigenvalue problem Heff |Ψ⟩ = ℏλn |Ψ⟩ which results in 23 generally
nonorthogonal right-eigenstates with complex eigenvalues λqp, where q denotes the number
of excitations and p is an index to distinguish the states . The real part of each eigenvalue
Re{λqp} = δqp determines the level shift δqp of the corresponding eigenstate from the single-
atom resonance ωe, while the imaginary part Im{λqp} = −γ̃qp yields the level width or
(half-)decay rate γ̃qp of the eigenstate.

In Fig. 4.5 we plot the eigenvalues for three identical atoms placed in 1D lattice with

  
  

  
  

-20 -10 0 10 20

4

3

2

1

0

Level shift  δ/Γ

L
ev

el
 w

id
th

  
-2
γ
/Γ

~

0

  
3

  21 22

23

  

12

11

13

Figure 4.5: Eigenvalues of the effective Hamilto-
nian Heff , Eq. (2.50a), for N = 3 linearly polarized
℘||ẑ atoms placed in a 1D lattice with distance
kd = 0.4x̂. Each eigenvalue λqp = (ωe+δqp)− iγ̃qp
is shown as a dot at the corresponding coordinates
(δqp ,−2γ̃qp). Eigenvalues with zero or three ex-
citations are plotted in black color, with one ex-
citation in blue, and those with two excitations
are plotted in red. Horizontal lines are plotted to
indicate whether an eigenstate is superradiant or
subradiant for the corresponding number of exci-
tations.
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Figure 4.6: Steady state emission rate and excitation spectra of a chain of N = 3 atoms
with the interatomic period kd = 0.4x̂ driven by linearly polarized ê||ẑ continuous wave
light with wave vector k||ŷ. (a) Spectra of the emission rates for various incident fields
versus the detuning of the driving laser. (b) Number of excitations for various incident field
versus detuning. Vertical dashed lines show the transition frequencies between states in frame
rotating with the atomic resonant frequency ωe, the number next to them shows the number
of photons needed for each transition and the color denotes transitions that include ground
state (dark purple), transitions that include single excited states (dark red), and those which
include double excited states (orange). The height of lines does not contain information.

lattice constant kd = 0.4x̂ with linear dipole moment ℘||ẑ, where we obtain the ground (λ0)
and the triple (λ3) excited states along with single (λ1p) and double (λ2p) excited superradiant
and subradiant eigenstates. Eigenstates with one and two excitations are two subradiant and
one superradiant in each case. In general, level shifts δqp can have any values but the level
widths −2γ̃qp must be non-negative, and they must also satisfy the following formula∑

p

−2γ̃qp
Γ

= qW (N − q) , (4.15)

where W (ng) is the number of eigenstates with q excitations, see Eq. (2.17). For instance, for
single excited states we have 0 ≤ −2γ̃1p/Γ ≤ 3 and for triple excited states 0 ≤ −2γ̃2p/Γ ≤ 6.

Figure 4.6 shows the steady state emission spectra and the excitations in the system
for various Rabi frequencies Ω and detunings ∆. In the same figure, we use vertical lines
to show the frequencies of all the possible transitions, while we also mark each transition
with the corresponding number of photons. Figure 4.6(a) shows that when the driving field
is resonant with the single excited superradiant state |λ13⟩ (∆ ≃ 15Γ) the atomic system
emits photons almost three times faster than a conventional two-level system. The same
graphs also reveal that the incoming laser can excite a single excited and a double excited
subradiant state at detunings ∆ = −15Γ and ∆ = −7.5Γ, respectively. The laser couples to
the subradiant state |λ11⟩ directly and it can drive the system up and down without radiating
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any photons. However, in the case of the double excited subradiant state |λ21⟩ the laser drives
the state through the intermediate state |λ13⟩. For strong Rabi frequencies we can put more
excitations in the system but due to the decay rate of |λ21⟩ the system radiates stronger than
the single excited subradiant state. Another interesting feature is the inability to climb up the
excitation ladder and populate the triple excited state, for which there are two reasons. First,
the perpendicularly incident plane wave has zero overlap with the antisymmetric subradiant
states |λ12⟩ and |λ22⟩, hence the system cannot climb up through these states. Second, the
other way is to take advantage of the strong coupling of superradiant states |λ13⟩ and |λ23⟩
with the driving field and overcome the frequency difference using strong Rabi frequency.
However, even in this case we system has to climb through two superradiant states, which
leads to very low population in the triple excited state.

In Fig. 4.7 we plot the second order correlation function for an incoming laser resonant
with the transition |λ0⟩ −→ |λ21⟩ with single atom Rabi frequency Ω = 0.8Γ. g(2)(τ) reveals
that the system exhibits photon bunching and fast oscillations which means that the second
photon arrives mainly after certain time delays. Hence, the first photon is radiated due to
the atomic jump from |λ21⟩ to a superposition of |λ11⟩ and |λ13⟩, then the second photon
is radiated when the last state jumps to the ground state. The fast beatings occur with
frequency equal to the frequency difference between states |λ11⟩ and |λ13⟩, when these two
states interfere constructively g(2) exhibits large values and when they interfere destructively
g(2) exhibits much lower values. These beatings decay rapidly because the state |λ13⟩ is
sperradiant. The slower oscillations that survive for times ∼ 50/Γ can be attributed to the
transition between the ground |λ0⟩ and the subradiant |λ11⟩ states.
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Figure 4.7: Second order correlation function
of photons radiated by a chain of N = 3 atoms
with normalized distance kd = 0.4x̂ driven by
linearly polarized ê||ẑ continuous wave light with
wave vector k||ŷ. The incoming laser excites the
transition |λ0⟩ −→ |λ21⟩ with Rabi frequency Ω =
0.8Γ. We averaged over M = 10000 realizations
with the system evolving for times tend = 4000/Γ.

4.2.2 Triangle configuration

We finally consider N = 3 atoms in an equilateral triangular configuration with side dis-
tance kd = 0.4 placed in xz-plane. Again, we assume a a uniform driving laser with linear
polarization ℘||ẑ and wave vector k||ŷ. We diagonalize the effective Hamiltonian and plot
the eigenvalues λqp in Fig. 4.8. Although all the interatomic distances are the same, the
dipole-dipole interaction is also affected by |℘̂ · r̂ij |2, see Eqs. (2.11), which leads to different
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Figure 4.8: Eigenvalues of the effective Hamil-
tonian Heff , Eq. (2.50a), for N = 3 linearly po-
larized ℘||ẑ atoms placed in equilateral triangu-
lar configuration in xz-plane with side distance
d = 0.4. Each eigenvalue λqp = (ωe + δqp)− iγ̃qp is
shown as a dot at the corresponding coordinates
(δqp ,−2γ̃qp). Eigenvalues with zero and three exci-
tations are plotted with black color, one excitation
with blue, and those with two excitations with red.
Horizontal lines help to distinguishing whether an
eigenstate is superradiant or subradiant.

interactions between the two atoms placed on x-axis and the atom placed on z-axis.1 Due to
small interatomic distances we obtain one superradiant and two subradiant states at single
and double excitation level, the eigenvalue spectrum is similar to the chain configuration but
not the same.

In Fig. 4.9 we plot the emission rate spectra and the excitations of the triangular atomic
configuration perpendicularly driven with various Rabi frequencies Ω. We see a dominant
peak in the emission graph which is attributed to the single excited superradiant |λ11⟩ shifted
by ∆ = −20Γ. The dominant peak in the excitation graph occurs when the laser drives the
transitions |λ0⟩ −→ |λ21⟩ and |λ0⟩ −→ |λ12⟩, with the former responsible for the large decay
rate while the latter traps the population increasing the excitation number. Furthermore,
driving lasers with positive detunings ∆ = 15Γ and ∆ = 30Γ can excite the subradiant state
|λ23⟩ and |λ13⟩, respectively. Eigenstate |λ23⟩ can be excited only with strong incoming laser
and store more that one excitation. Eigenstate |λ13⟩ can be excited with weaker lasers and
achieve lower steady state population.

Finally, in Fig. 4.10 we plot g(2)(τ) for the two-photon transition |λ0⟩ −→ |λ23⟩ driven
with Rabi frequency Ω = 0.8Γ. We observe the same phenomenon as we did with chain con-
figuration in Fig. 4.7, where the photons come in pairs and have specific time delays between
them. The beatings here are much faster due to the larger frequency difference between states
|λ11⟩ and |λ13⟩, while we do not observe slow long lived oscillation due to weak coupling be-
tween the laser and |λ13⟩.

1In the case of circular dipole moment ℘̂ = (x̂ ± iẑ)/
√
2 the dipole-dipole interaction is only affected by

the interatomic distances, because |℘̂ · r̂ij |2 = 1 ,∀rij⊥ŷ. For an equilateral triangle the effective Hamiltonian
has eigenvalue spectrum with a pair of degenerate states at single excitation level and another degenerated
pair at double excitation level.
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Figure 4.9: Steady state emission rate and excitation spectra of N = 3 atoms in equilateral
triangular configuration in xz-plane with side distance kd = 0.4 driven by linearly polarized
ê||ẑ continuous wave light with wave vector k||ŷ. (a) Emission rate spectra for various
incident fields versus detuning of the driving laser. (b) Number of excitations for various
incident fields versus detuning. Vertical dashed lines show the transition frequencies between
different states in the frame rotating with the atomic resonant frequency ωe, the number
next to them shows the number of photons needed for each transition and the color denotes
transitions that include ground state (dark purple), transitions that include single excited
states (dark red), and those which include double excited states (orange).
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Figure 4.10: Second order correlation function
of photons radiated by N = 3 atoms with equi-
lateral triangular configuration placed in xz-plane
with side distance kd = 0.4 driven by linearly po-
larized ê||ẑ continuous wave light with wave vec-
tor k||ŷ. The incoming laser drives the transition
|λ0⟩ −→ |λ23⟩ with Rabi frequency Ω = 0.8Γ. We
averaged over M = 10000 with the system evolv-
ing for times tend = 4000/Γ.



Chapter 5

Conclusions and Future Extensions

In conclusion, in this thesis we have discussed two topics: (i) the enhanced cross section of
atomic arrays under the single excitation approximation, and (ii) the radiation properties of
small ensembles of closely-spaced atoms driven by strong coherent laser fields.

For the large atomic arrays we showed that they exhibit enhanced optical cross section
when the incident laser field drives a resonant collective atomic eigenstate, or a superposition
of eigenstates with similar frequency shifts. We showed that both superradiant and subradiant
states can serve as optical mirrors achieving almost zero transmission and perfect reflection of
the incoming mode. Furthermore, we suggested to apply inhomogeneous detuning patterns on
the atoms to improve the performance of atomic arrays as mirrors, to create parabolic mirrors
from flat arrays, and to deflect the incoming laser beam. A future extension in this direction
would be the improvement of beam deflection by connecting the detuning pattern with the
phase front of a Gaussian mode emitted in the desired direction, or by considering more
than one atomic arrays. Given that the experiments with atomic mirrors are conducted with
pulsed laser fields [12], it would be interesting to explore further the atomic array response
in the pulsed regime and find the optimal pulse characteristics (shape, duration, chirp).

For the case of small ensembles of closely-spaced atoms, we showed that they can be driven
by classical coherent light and emit bunched or anti-bunched photons. Long-lived subradiant
states can serve as quantum memories to store one or more photons. Moreover, we presented
the eigenvalue spectrum showing the large energy shifts between atomic eigenstates which lead
to non-linear behavior of the system. For example, we can put one excitation in the system
by shining continuous laser on a specific transition, while putting a second excitation in the
systems using the same driving field is not possible due to large frequency shifts between the
states. An interesting extension here would be to consider more atoms and explore possible
quantum protocols that can excite atomic states with desired subradiant characteristics.
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Appendix A

Detection of selected mode

Here we present a simple method used in Chap. 3 to study the transmission, reflection and
scattering of a Gaussian mode of light by an atomic ensemble [30].

Consider a photodetector, with unit efficiency, that can collect photons from a single
mode of radiation field

Êdet(r) = êdet

√
ℏωd

2ϵ0AL
φdet(r)âdet (A.1)

where êdet is the polarization of the mode, φdet(r) is the spatial distribution, AL is the
quantization volume with A being the cross section of the mode and L the quantization
length, and âdet is the annihilation operator for the photons in that mode. We assume that
bosonic operators â†det, âdet satisfy the equation ⟨â†detâdet⟩ = ndet = n (L/c) with c being the
speed of light in free space, which is equivalent to assuming the quantization volume being
a hypothetical cavity, with volume V = AL, moving with the speed of light. The total field
in the selected mode is given by the sum of the incident field and the field radiated by the
atoms,

âdet = âinc;det + âatom;det . (A.2)

For instance, when the incident mode is the same with the detector mode and the are no
atoms we have âdet = âinc;det ≡ âinc, while in the case where the incoming mode is orthogonal
to the detection mode, we have âdet = 0 in the absence of atoms and âdet = âatom;det in
the presence of atoms. The number of incident photons in detector mode is calculated by
the projection of the total incoming field onto the detector mode. The field radiated by the
atoms into the detector mode is given by

âdet(t) = i

N∑
j=1

g∗det(rj)

∫ t

0
dt′σ̂j(t

′)e−ωd(t−t′) , (A.3)

which follows from the Heisenberg equation for the field operator

˙̂adet(t) = i

N∑
j=1

g∗det(rj)σ̂j(t) , (A.4)

where gdet(rj) =
√

ℏωd/(2ϵ0AL)φdet(rj) · ℘eg/ℏ is the atom-field coupling strength with
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φm(rj) = φm(rj)ê. We substitute Eq. (A.4) in Eq. (A.2) and obtain

âatom;det =
i

ℏ

√
ℏωd

2ϵ0Ac

N∑
j=1

φ∗
det(rj)ê

∗
det · ℘geσ̂j =

i

ℏ

√
L

c

N∑
j=1

√
ℏωd

2ϵ0AL
φ∗

det(rj)ê
∗
det · ℘geσ̂j

=
i

ℏ

√
L

c

N∑
j=1

√
ℏωd

2ϵ0AL
φ∗

det(rj)ê
∗
det · ℘geσ̂j = i

√
L

c

N∑
j=1

E∗
det(rj)ê · ℘ge

ℏ
σ̂j

= i
1√
n c
L

N∑
j=1

E∗
det(rj)ê · ℘ge

√
n

ℏ
σ̂j = i

1√
⟨â†inc;detâinc;det⟩

N∑
j=1

Ω∗
det(rj)σ̂j ,

(A.5)

where the term outside of the summation has units of [s]1/2 while the Rabi frequencies Ωdet

inside the sum have units of 1/s. Now we can plug Eq. (A.5) into Eq. (A.2) and calculate
the rate of photons in detector mode transmitted in the forward direction

T = | ⟨â†detâdet⟩ | = | ⟨â†inc;detâinc;det⟩+ ⟨â†atom;detâatom;det⟩ | , (A.6)

the reflected into the same backward mode

R = | ⟨â†atom;detâatom;det⟩ | , (A.7)

and the scattered S = 1− T −R.
In the case of weak driving, meaning that the incoming field does not saturate the atomic

transition ⟨â†incâinc⟩ /Γ ≪ 1 and there is less than one photon in the quantization volume

⟨â†incâinc⟩
L
c < 1, we can truncate the total Hilbert space to up to one excitation and solve the

Schrödinger equation obtaining Eq. (3.3). This results in further simplification of Eqs. (A.5),
where operators σ̂j can be replaced by bj . We choose the quantization length L and photon

rate in to the mode ⟨â†incâinc⟩ so that the above conditions are satisfied.
We apply this method in Chapter 3 assuming the same Gaussian mode for the incident

and the detector field. Hence, the spatial distribution of the mode is

φG(r) =
w0

w(z)
e
−x2+y2

w2(z) ei(kz−atan(z/zR))e
−ik x2+y2

2R(z) , (A.8)

where zR = πw2
0/λ0, and

w2(z) = w2
0

[
1 +

(
λ0z

πw2
0

)2
]
= w2

0

[
1 +

(
z

zR

)2
]
, (A.9a)

R(z) = z

[
1 +

(
πw2

0

λ0z

)2
]
= z

[
1 +

(zR
z

)2]
. (A.9b)

Evidently, the cross section is A =
∫
z=0 |φ|2dS = πw2

0/2, and Ωdet(rj) in Eq. (A.5) is the
Rabi frequency of the incident field used in Eqs. (3.3).
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