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I. ABSTRACT

The field of quantum information (QI) is attracting enormous interest, in view of its

fundamental nature and its potentially revolutionary applications to cryptography, telepor-
tation and computing. These applications rely on the ability to “engineer”, transfer and
maintain the entanglement of quantum logic units by their interaction or measurement.
Thus entanglement is a key resource of Q.
Among the various quantum logic schemes, those based on photons have the advantage of
using very robust and versatile carriers of QI. Yet the main impediment towards their oper-
ation at the few-photon level is the weakness of photon-photon interaction in conventional
media. A promising avenue has been opened by studies of enhanced nonlinear coupling
via electromagnetically induced transparency (EIT) in multilevel atomic vapors, allowing
highly efficient cross-phase modulation (XPM) of two optical beams. We explore this new
avenue, aiming towards the ultimate goal of achieving unprecedented degree of control over
the entanglement of photons in these schemes.

Throughout the investigation of these QI processing schemes, we are mainly interested
in getting new insights and deep understanding of quantized field-matter interactions and
their control.

A more classical avenue that has emerged in the course of the research, is concerned with

vector solitons formed by two optical beams via XPM within the EIT media.
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II. INTRODUCTION
A. The role of entanglement in Quantum Information

An information theory that is based on quantum mechanics extends and completes
classical information theory. Apart from quantum generalizations of classical notions such
as sources, channels and codes, the Quantum Information Theory (QIT) includes two
complementary kinds of information: classical information and quantum entanglement.
Entanglement is a unique feature of quantum mechanics, whereby the quantum states
of two or more particles (e.g., atom, photon or ion) are highly correlated and cannot be
separated, that is, each particle’s quantum state is described with reference to the other
particle. If two particles are entangled, then by performing a measurement on one of the
particles we can immediately know the state of the other particle, even if they are separated
in space. While classical information can be copied but can only be transmitted forward
in time, entanglement cannot be copied but can connect any two points in space-time
[1]. Conventional processing operations destroy entanglement but quantum operations can

create it and use it for example, to speed-up certain classical computations.

B. Quantum computing and teleportation

A new class of computers is possible using physical components that obey quantum
mechanical laws. The register of a quantum computer is composed of many two-state systems
(quantum bits or qubits). A qubit is typically a microscopic system, such as an atom, nuclear
spin or photon, where the states 0 and 1 are represented by two distinguishable states of the
microscopic system (e.g., vertical and horizontal photon polarizations: [0) =<, |1) =]).
Unlike its classical analogue, a qubit can not only be in one of the basis states |0) or |1),
but also in any superposition state of the form: [|¢)) = «|0) + #]1), where |a|? and |3|?
represent the probability to be in states |0) and |[1) respectively. A qubit can therefore
represent a continuum of states in a 2D complex vector space.

A quantum computation is being processed by a succession of two-qubit quantum
gates: coherent interactions between specific pairs of qubits, by analogy to classical digital

computation as a succession of Boolean logic gates. The time evolution of an arbitrary



quantum state is computationally more powerful than the evolution of a digital logic
state. The quantum computation can be thought of as a coherent superposition of digital
computations proceeding in parallel. Shor has shown [2] how this parallelism can be
exploited to develop polynomial-time quantum algorithms for computational problems,
such as factoring numbers into primes, which was considered an intractable problem before
Shor’s algorithm. The factorization of large composite numbers into primes is a problem
which is the basis of the security of many classical-key cryptography systems. Quantum

computers also provide exponential speed-up for simulating many-particle physical systems

3]-

The mathematical definition of a two-qubit state is:

|YaB) = c00]0408) + co1 [0alp) + c10]1408) + c11 |1alp) (1)

In general, this state is an entangled two qubit state, thats is, it cannot be factorized into a
product state of the two individual qubits:(a |0) 4+ 5|1)) 4(a/ |0) + 5 |1))5. Only when the
coefficients in (1) satisfy coo = ad/, co1 = aff’, c10 = [/, and ¢1; = B, the state can be
factorized into a product of two states and is therefore non-entangled.

1

An important example of entangled two-qubit states are the Bell-states: |Boo) = —5(|00) +

11), [Bor) = Z5(101) + [10)),  [Buo) = 2(100) — 1)), and [By) = 25(J01) — [10)).
These maximally entangled states (often called Einstein-Podolsky-Rosen or EPR pair) are
widely employed in quantum communication protocols, such as teleportation and quantum
dense-coding, as well as in fundamental tests of the locality of quantum mechanics [4]. In
the first stage in such protocols, a pair of particles in a Bell-state is shared between two
parties. In the second stage, this shared entanglement is used to achieve transmission of a
qubit via two classical bits or transmission of two classical bits via a single qubit.
Superdense coding and teleportation have recently received considerable experimental at-
tention. The Innsbruck group [5] implemented a version of superdense coding in which
three distinguishable states are created by manipulating one member of the EPR pair of
polarization-entangled photons. The same group have also demonstrated teleportation us-
ing these photon states[6].

The ability to preserve and manipulate an entangled states is the distinguishing feature

of quantum computers and teleportation schemes, responsible both for their advantages and



for the difficulty involved in building them.

C. Quantum gates

It was shown [7] that any quantum computation can be expressed as a sequence of one-
and two- qubit quantum gates, that is, unitary operations acting on one or two qubits at a

time.

Q@
The most general one-qubit gates are described by a 2x2 unitary matrix & , mapping

v o
|0) to «|0) + 3 |1), and |1) to v]0) + § |1). One-qubit gates can be physically implemented

quite easily, for example, by quarter- or half-wave plates acting on polarized photons.
The standard two-qubit gate is the controlled-NOT gate, which flips the 'target’ (second)
qubit if its control’ (first) qubit is |1): it interchanges |10) with |11) and does not change the

|01) and |00) states. Another example is the controlled phase gate which can be represented

10 .
by the matrix .| mapping the state |11) to €' |11) while leaving the other states
0 e
unchanged.
Two-qubit gates are much more difficult to realize because they require two separated
QI carriers to be brought into strong and controlled interaction. Theoretical suggestions for

optical implementations of the controlled-phase logic gate are the main theme of the thesis

and will be discussed in detail in the first three chapters.

D. QI Schemes

The requirements for realizing a quantum computer are scalable quantum bits (qubits)

that can (i) be well isolated from the environment, preventing decoherence and entangle-
ment loss; (ii) be initialized, measured and undergo controllable interactions to implement
a universal set of quantum logic gates.
NMR techniques have been used to implement the most advanced algorithms [8]. The
limitations of such systems, where the information is encoded in a mized state and the
measurement is done on an ensemble, is the difficulty to scale it to many qubits with high
fidelity.

In contrast, ion-trap systems appear to be more promising [9]. The basic idea is to



store a qubit in a state of an ultracold trapped ion. Ions strongly interact via mutual
coulomb repulsion, allowing unitary manipulation and control of the qubits by lasers [10].
The drawback of quantum computations with ions is their strong interaction with the
environment due to their charge. This leads to decoherence caused by technical noise
sources. Nevertheless, beautiful experiments for QI processing with trapped ions have
recently been demonstrated at NIST [11].

Neutral atoms trapped in an optical lattice were suggested in [12]. This technology appears
to have good prospects in the long run [13]. Solid state systems including spin qubits in
semiconductors [14], quantum dots [15, 16] and nitrogen vacancies in diamonds [17] can
offer high-scalability. These are also good candidates for the future.

Recently, entanglement between two superconducting qubits was demonstrated [18]. The
disadvantage here is that strong interaction in a condensed matter environment makes
decoherence a difficult problem.

Single photon qubits [19-22] offer both the advantages of isolation from the environment,
as well as the best level of control over their quantum states. They are therefore our chosen

candidates for quantum information processing, as will be described in detail in this thesis.

E. QI with photons

As stated above, the main impediment towards the successful development of the QI field
is decoherence, i.e, the loss of entanglement and QI by the effect of the environment [23].
We plan to overcome this impediment by using photon-based schemes in nonconventional
media [24-26].
Photons are ideal carriers of QI, as they travel at the speed of light and are negligibly affected
by decoherence. Therefore, photon-based schemes [19-22] have the advantage of using very
robust and versatile carriers of QI.
However, the disadvantage of operating at the few-photon level is the weakness of their inter-
actions (optical nonlinearities) in conventional media [27]. This weakness of photon-photon
interactions has precluded so far the construction of deterministic quantum teleportation
and cryptography schemes, which require the entanglement of few-photon fields and their

sharing by distant partners [28]. The alternative chosen by many workers has been proba-



bilistic, based on linear operations followed by measurements and postselection of only the
desired measurement outcomes [22, 29].

A promising avenue has been opened by studies of enhanced nonlinear coupling via electro-
magnetically induced transparency (EIT) in atomic vapors, which will be explained in detail

in the following section.

F. Control of photon propagation and interactions for quantum computing

1. EIT and Dark State Polaritons
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FIG. 1: EIT

Our main vehicle is based on EIT and the associated dark-state polaritons. These occur
in three-level atoms with a pair of low-energy states (Fig. 1a), for example, sublevels of the
ground electronic state of alkali atoms, having different magnetic moments. These atoms
interact with two near-resonance laser fields: a probe field, coupling levels |1) and |2) and
a control field, coupling levels |2) and |3).

Starting with all the atoms in the ground state |1), and applying first the control field, we

stimulate the system into the so-called ”dark” coherent superposition:

0, [1) — Q, [2)eliloteo)x—iep )
Nz

which is a stationary eigenstate of this three-level system. Note that with €2, = 0 this

(2)

|Dark) =

superposition reduces simply to |1), our initial state.
If one switches on the probe field slowly enough (adiabatically), the system will remain in this

eigenstate, which turns into a superposition of levels |1) and |2), eliminating absorbtion and



preventing the population of the excited level |3). The perfect EIT condition is two-photon
resonance, i.e, the energy difference between the two laser fields exactly matches the energy
difference between the levels |1) and |2). This condition leads to a very narrow transparency
window, which can be increased by applying stronger control field. As illustrated in Fig.
1b, within this transparency window, the refractive index experiences steep variation as a

function of the frequency, resulting in very low group velocity of the probe pulse:

1
Vg = 3
o 3

where n is the refractive index and c is the speed of light in vacuum. The group velocity
is proportional to the intensity of the control field and inversely proportional to the atom
density [30].

If we now switch off the control field, letting its intensity fall off to zero, the result is a
complete halt of the probe field. (see references [31-33] about ” stopping the light”).

The dynamics of light propagation in EIT is usually discussed in terms of polaritons,
which are a superposition of the electromagnetic field and the collective atomic component
(atomic spin coherence). As the light field enters the medium, its energy is compressed by
a factor v,/c, i.e., the energy of the pulse is much smaller inside the medium, while the
remaining energy is used to establish the coherence between the levels |1) and |2), flipping
atomic dipoles. This combined excitation of photons and dipoles (atomic ”pseudospins”)

spins is the dark-state polariton [30].

2. Cross-phase modulation (XPM)
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FIG. 3: Proposed implementation of the optical CPHASE logic gate between two single-photon

qubits, using polarizing beam-splitters (PBS), and 7 cross-phase modulation (XPM) studied here.

Among the effects made possible by EIT, we find XPM to be most useful for our purposes.
As described above, in the vicinity of two-photon resonance the refractive index dispersion
is very steep. Therefore, small energy shifts result in large refractive-index change (giant
Kerr effect), allowing highly efficient cross-phase modulation (XPM) of two optical beams,
namely, two-field interaction resulting in their mutual nonlinear phase shift [24, 30, 34, 35].
We now consider a four-level system in the N-shaped configuration (Fig. 2a), where in
addition to the EIT conditions we apply an off-resonant field £, which couples the transition
|2) to |4). This field induces an AC Stark shift and effectively changes the energy of level
|2), resulting in a change of the resonant-frequency for the probe field (EIT condition). This
change in the resonant frequency leads to a change in the index of refraction (Fig. 2b),
corresponding to giant XPM [34, 36, 37]. For a recent experimental realization see [38].
We exploit this highly efficient XPM of two optical beams in each chapter of this thesis, either
for the purpose of achieving the deterministic entanglement of two photons (Chapters I11-V),
or, for a more classical communication application, which is the unique new type of vector

solitons in EIT media (Chapter VI).

3. Photonic band gap materials (PBG)

One way of maximizing XPM involves the use of PBG materials. Photonic crystals (PCs)
are structures having spatially periodic dielectric constant. They are also known as photonic
band gap (PBG) materials and are considered to be the photonic analogues of solid-state
electronic crystals. They were originally proposed by John and Yablonovitch [39] in order to

realize two new optical phenomena: localization (trapping) of light and complete inhibition
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of spontaneous emission [40]. The band structure of PCs refers to the spectral density of
propagating photon modes. For the range of frequencies inside the gap, the density of modes
(DOM) is identically zero, which means that the propagation of electromagnetic waves with
frequency within the PBG is forbidden in all directions, for 3D PBG, or in the directions
of periodicity, for D < 3 PBG. These ’forbidden” modes undergo total (Bragg) reflection in
the periodic structure.

A 3D PBG reflects light coming from any direction, while a 2D (1D) PBG reflects only
light coming from the plane (direction) of periodicity. A 1D PBG is simple enough to
realize, by arranging an periodic array of dielectric layers, since for any difference in the
index of refraction a band gap will appear. The width of this gap will grow with the index-
contrast. This is not the case with 2D and 3D PBG, where the index-contrast should be
large enough for a PBG to appear. In addition, the lattice constant must be of the order
of the wavelength of the EM waves. One stronger condition on the density of dielectric
scatterers is that the microscopic (Mie) scattering resonance (within a unit cell) and the
macroscopic Bragg resonance should overlap (see [41] and references therein).

The first experimental PBG was created by Yablonovitch and co-workers [39] with a band
gap in the microwave region. Unfortunately, the Yablonovitch fabrication method cannot
be easily extended to the optical region. 3D PBGs have been developed by other methods
[42-44] down to the near infra-red region [45].

We have considered a PBG to be a powerful means of trapping a photon, allowing it to
repeatedly interact with another photon and thus maximize their XPM (Chapter III-IV).
This requires the ability to dynamically shift or switch-on and off the PBG, so as to allow
the photon to enter and exit the medium freely (Chapter IV).

G. Existing schemes of Photon-Photon Entanglement

Several studies have predicted the ability to achieve an appreciable nonlinear phase
shift of extremely weak optical fields [46] or a two-photon switch [37], using the driven
N-configuration of atomic levels. One of the main hindrances of such a scheme is the mis-
match between the group velocities of the field that is subject to EIT and its nearly-free
propagating partner, which severely limits their effective interaction length [36].

There are schemes [34, 35| that can remove this bottleneck, by basically modifying the
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nonlinear interaction of weak optical pulses. The scheme in Ref [35] consists in symmetric
photon-photon coupling by cold atoms with Zeeman-split sublevels and it relies on simultane-
ous EIT for both fields interacting with magnetically (Zeeman-) split sublevels in the pres-
ence of two driving fields. It thereby renders their group velocities equal and allows their
cross-coupling over long distances, bringing it to its ultimate limit of efficiency. Another
scheme [34] for achieving large interaction lengths and highly efficient two-field coupling
requires an equal mixture of two isotopic species, interacting with two driving fields and an
appropriate magnetic field: Both schemes can either yield giant cross-phase modulation or
ultrasensitive two-photon switching in cold vapor, without resorting to photonic crystals or
cavities [47].

The drawback of these or any other schemes that involve co-propagating pulses lies in
the fact that, since the phase shift of each pulsed field is proportional to the intensity
of the other, it will be maximal at the pulse peak and vanish at the tails. This feature
produces frequency chirping of the pulses and, therefore, their spectral broadening. Even if
the resulting spectral width does not exceed the transparency window of the EIT resonance,
the multimode character of the interaction between two cross-coupled few-photon pulses
unduly complicates their entanglement.

We have suggested that this drawback may be remedied [48] via controlled modification of
the photonic density of states in gaseous EIT media, by spatially modulating their refractive
index with an off-resonant standing light wave. By dynamically varying the spectral width
and edges of the resulting photonic band gap (PBG) in time, a propagating light pulse can
be converted into a stationary photonic excitation inside the PBG, where its propagation is
forbidden. The concept of optically-induced PBGs [49] together with a recent experimental
progress in trapping and manipulating light pulses in dynamically controlled PBGs in atomic
vapors [50], can be highly instrumental. The trapped photonic excitation can induce large
nonlinear phase shifts at the single-photon level that can be chirp-free, for specific schemes
[24, 25] exploiting its standing-wave character. These features open up the way for possible
QI applications without the limitations associated with travelling wave configurations [36]

and without invoking cavity QED techniques [47, 51].
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H. Spatial Optical Solitons

In addition to the photon-photon entanglement, we have found that XPM has unique
advantages in the field of optical solitons.
Optical beams have natural tendency to diffract upon propagation in an homogenous linear
media. For example, a quasi-monochromatic Gaussian beam propagating in a linear medium,
will have the narrowest width at some particular plane in space at which the wavefront of
the beam is planar. However, as the beam propagates away from that plane, the wavefront
becomes quadratic and the beam diffracts. In nonlinear medium, the refractive index is
modified by the presence of light, and therefore the propagation of an optical beam can be
different from its propagation in a linear material. In particular, under certain conditions
it is possible to keep the beam wavefront planar, thus allowing a non-diffracting beam to
propagate. This self-trapped beam is called an optical spatial soliton [52]. Such solitons will
appear whenever the nonlinearity can compensate the diffraction, leading to a stable soliton
propagation.
Spatial solitons may provide a powerful means of creating reconfigurable all-optical circuits
where light is guided and controlled by light itself. One of the goals of modern nonlinear
optics is the development of the ultimate fast, all-optical device in which light can be used
to control light. The unique possibilities of reconfigurable circuits created in nonlinear
bulk media without any fabricated optical waveguide can be achieved by employing the
fundamental concept of light guiding light, based on the propagation of optical spatial
solitons [52]. Spatial solitons are considered to be efficient information-carrying units. The
process of classical all-optical switching can be associated with the evolution of different
types of spatial optical solitons and interactions between them. Other applications center
on some of the unique properties of soliton collisions, where one can exploit soliton collisions
for implementing logic functions, or even classical computation. The use of solitons for
long-distance communications is under active research from the viewpoint of fundamental

physics and industrial applications. [53]
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I. Scope of the work

In this thesis we have identified and explored in depth several promising novel approaches
to photon-photon entanglement in gases and solids, as well as to optical solitons. Our
findings suggest the feasibility of a controlled-phase quantum logic gate via XPM between
two single photons,

Namely, we have proposed promising novel approaches to optically-induced (-controlled)
polariton-polariton entanglement with suppressed decoherence in gases and solids, via XPM
of two optical beams. These findings suggest the possibility to realize a controlled-phase
logic gate between two single photons, and new soliton effects. Our novel approaches
include: (a) giant nonlinearity and entanglement of single photons via electromagnetically
induced transparency (EIT) within optically-induced photonic bandgaps (Chapter III ) and
(b) within solid-state photonic bandgap (PBG) structures (Chapter IV); (c) long-range
interaction between EIT-polaritons via dipole-dipole forces (Chapter V), leading to entan-
glement of two single-photon pulses with moderated transverse confinement; (e) Classical

vector solitons formed by two optical beams via XPM within EIT media (Chapter VI).

In Chapter III, we study a novel regime of giant Kerr-nonlinear interaction between two
ultraweak optical fields in which the cross-phase modulation is not accompanied by spectral
broadening of the interaction pulses. This regime is realizable in atomic vapors, when a
weak probe pulse, upon propagating through the EIT medium, interacts with a signal pulse
that is dynamically trapped in a PBG created by spatially-periodic modulation of its EIT
resonance. We find that conditional phase shifts as large as 7, resulting in photon-photon
entanglement, can be obtained in this regime. The attainable 7 phase shift, accompanied
by negligible absorption and quantum noise, is shown to allow a high-fidelity realization of
the CPHASE (controlled-phase) universal logic gate between two single-photon pulses.
Notwithstanding its highly promising advantages, deterministic EIT-polariton entanglement
faces other serious difficulties. Small group velocities that correspond to long interaction
times, and thus large conditional phase shifts, in a medium of finite length (typically of a few
centimeters) [34, 54] impose limitations on the photonic component of the signal polariton,
whose magnitude determines the conditional phase shift. Copropagating pulses pose yet

another difficulty: since the conditional phase-shift of each pulse is proportional to the local
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intensity of the other pulse, different parts of the interacting pulses acquire different phase
shifts, which causes their frequency chirp and spectral broadening.

As we show in Chapter III, the foregoing difficulties may be overcome via controlled
modification of the photonic density of states in gaseous EIT media, by modulating their re-
fractive index with an off-resonant standing light wave [48]. By properly tuning the resulting
photonic band structure, a propagating signal pulse can be converted into a standing-wave
polaritonic excitation inside the photonic band gap (PBG). The trapped signal polariton,
having an appreciable photonic component, can impress a large phase shift that is spatially-
uniform (across the pulse) upon the propagating probe, at the single-photon level.

We formulate the basic theory underlying our scheme and give an analytical solution of
the equations of motion for the two interacting quantum fields. We study the cross-phase
modulation between the fields. Using our solution, we calculate the output states for two
multimode coherent fields, as well as for two single-photon multimode Fock-states, enabling
the realization of a deterministic CPHASE logic gate between two single-photon pulses

representing qubits.

In Chapter IV we put forward a mechanism that may produce strong photon-photon
interactions along with suppressed quantum noise and give rise to their entanglement with
high fidelity, by combining the advantages of their dispersion in PBG structures and of the
strongly enhanced nonlinear optical coupling achievable via EIT in an appropriately doped
medium. The main idea is that a single-photon signal pulse is adiabatically converted into a
standing-wave polaritonic excitation inside the periodic structure. This trapped polariton,
having an appreciable photonic component, can impress a large, spatially-uniform phase
shift upon a slowly propagating probe polariton. This task can further be facilitated by
employing 2D- or 3D-periodic structures with defects where the two pulses interact via
tightly confined modes [55-58].

Giantly enhanced cross-phase modulation with suppressed spectral broadening is predicted
between optically-induced dark-state polaritons whose propagation is strongly affected by
photonic bandgaps of spatially periodic media with multilevel dopants. This mechanism is

shown to be capable of fully entangling two single-photon pulses with high fidelity.

In Chapter V, we present our study of a novel scheme for the generation of conditional
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phase shifts between two colliding slow-light polaritons in atomic vapors. The nonlinear
interaction is provided by strong, long-range dipole-dipole interactions between Rydberg
states of the multi-level atoms in a ladder configuration. In contrast to the previous
schemes, this mechanism allows for a homogeneous conditional phase shift of 7 even for
moderate transverse confinement of single-excitation wavepackets, which is necessary for
the realization of deterministic phase gate between single-photon pulses.

Instead of resorting to the rather weak short-range collisional interactions of atoms [59],
here we follow a different approach that is based on the long-range dipole-dipole interactions
between atoms in the internal Rydberg states, which are populated only in the presence of
polaritons. In a static electric field, such states possess large permanent dipole moments
[60]. Thus the strong nonlocal dipole-dipole interaction between the atoms can further
enhance the effective interaction time between the polaritons. We derive and solve the
effective one-dimensional equations of motion for the polariton operators. We show that
under experimentally realizable conditions, the conditional phase shift in a collision of
two single-quantum polaritons is spatially homogeneous and can be sufficiently large for
the implementation of the quantum phase gate, even for moderate focusing or transverse
confinement of interacting pulses.

The advantageous features of the present scheme pave the way for possible QI applications
based on deterministic photon-photon entanglement, without the limitations associated
with traveling wave configurations [36] and without invoking cavity QED techniques

20, 61, 62].

Despite the extensive discussion of the giant XPM in EIT media, and its recent experi-
mental demonstration [38], its analysis has been mainly restricted to one dimensional (1D)
propagation, without considering transverse (diffraction) effects of the cross-coupled beams.
In Chapter VI we study unexplored aspects of the giantly-enhanced XPM between two
beams subject to EIT: the formation of low-power spatial solitons that arise solely from the
balance between diffraction and XPM, with no contribution from SPM.

We theoretically show that the giant Kerr nonlinearity in the regime of electromagneti-
cally induced transparency (EIT) in vapor may cause the formation of hitherto unobserved
1D and 2D spatial Thirring-like vector solitons, wherein the nonlinear terms are solely due to

the cross-phase modulation that couples two parallel light beams. This is, to our knowledge,



the first physical system supporting spatial solitons with solely XPM interaction.
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III. DETERMINISTIC QUATUM LOGIC WITH PHOTONS VIA OPTICALLY
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We study the giant Kerr nonlinear interaction between two ultraweak optical fields in which the cross-phase-
modulation is not accompanied by spectral broadening of the interacting pulses. This regime is realizable in
atomic vapors, when a weak probe pulse, upon propagating through the electromagnetically induced transpar-
ency(EIT) medium, interacts with a signal pulse that is dynamically trapped in a photonic band gap created by
spatially periodic modulation of its EIT resonance. We find that large conditional phase shifts and entanglement
between the signal and probe fields can be obtained with this scheme. The attainddalse shift, accompa-
nied by negligible absorption and quantum noise, is shown to allow a high-fidelity realization of the controlled-
phase universal logic gate between two single-photon pulses.

DOI: 10.1103/PhysRevA.71.023803 PACS nuntber42.50.Gy, 03.67.Lx

[. INTRODUCTION and the maximal conditional phase shifb]. This drawback
may be remedied by using an equal mixture of two isotopic
The field of quantum informatio(QI) is attracting enor-  species, interacting with two driving fields and an appropri-
mous interest, in view of its fundamental nature and its poate magnetic field, which would render the group velocities
tentially revolutionary applications in cryptography, telepor-of the two weak pulses equ@l6]. Alternative schemes to
tation, and computinfl]. QI processing schemes rely on the achieve the group velocity matching and strong nonlinear
ability to “engineer” and maintain the entanglement ofinteraction between the pulses employ a single species of
coupled systems. Among the various QI processing schemesultilevel atoms that couple to both fields insgmmetric
of current interesf2—7], those based on photof8,7] have  fashion[17,18.
the advantage of using very robust and versatile carriers of Notwithstanding its highly promising advantages, deter-
Ql. Yet the main impediment toward their operation at theministic EIT-polariton entanglement faces other serious dif-
few-photon level is the weakness of photon-photon interacficulties. Small group velocities that correspond to long in-
tion (optical nonlinearitiesin conventional medidg]. One  téraction times, and thus large conditional phase shifts, in a
way to circumvent these difficulties is to use linear opticalMedium of finite length(typically of a few centimetejs
elements, such as beam splitters and phase shifters, in co[r‘?'-6_18 Impose limitations on th? photonic component of thg
junction with single-photon sources and detectors, to achievg!9nal polariton, whose magnitude determines the condi-
probabilistic photon-photon entanglement, conditioned ont:gﬂl‘i‘;_pg?nsfesmfé' Sgr?c;ﬁ%i%‘?“gr?aggSs;ifrtm;feg:ér?np%rsz ?sl,f
}Iri]aer;upchc;zif:[l;]).utcome of a measurement performed on augfoportional to the local intensity of the other pulse, different
A promising avenue fordeterministically rather than

parts of the interacting pulses acquire different phase shifts,

AN . ) \C/}/hich causes their frequency chirp and spectral broadening.
probabilistically, er.“ang“”g single photqns has been OPENEU As we show here, the foregoing difficulties may be over-
) ) . . €ome via controlled modification of the photonic density of
regime of electromagnetically induced transparefif) in states in gaseous EIT media, by modulating their refractive

atomic vapors[9,10]. EIT relies on the classical driving ;- ey with an off-resonant standing light waya9]. By
fields to induce coherence between atomic levels and traan

f he field i d d polari < "properly tuning the resulting photonic band structure, a
orm the field into an atom-dressed polariton propagating irh 4 4ating signal pulse can be converted into a standing-
the medium with controllable, arbitrarily small group veloc-

) ; . o laritoni itation inside the photonic band
ity [11,12. These studies have predicted the ability towave polaritonic excration Insice the pnotonic band gap

PBG. Th ignal polari havi iabl
achieve an appreciabt®nditionalphase shift, impressed by (PBG) e trapped signal polariton, having an appreciable

; . photonic component, can impress a largpatially uniform
F1n4e] VJ?.%'; ft'ﬁled dLrJiI\)/ce)E st‘:;gﬁg’]’cgaf%jgigg%fgt s;’nv;f:clgv_phase shift upon the propagating probe, at the single-photon

; level. The advantageous features of the present scheme pave
els. One drawback of these schemes has been the misma g P b

b h lociti fth b | . way for possible QI applications based on deterministic
etween the group velocities of the probe pulse moving as 6hoton-photon entanglement, without the limitations associ-
slow EIT polariton and the nearly free propagating signal

. - ; o ) ated with traveling-wave configuratiof$5] and without in-
pulse, which severely limits their effective interaction Iengthvoking cavity QED techniquef0].

In Sec. Il we formulate the basic theory underlying our
scheme and give an analytical solution of the equations of
*Email address: dap@iesl.forth.gr motion for the two interacting quantum fields. In Sec. Il we
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FRIEDLER, KURIZKI, AND PETROSYAN PHYSICAL REVIEW A71, 023803(2009

@)  Anmha Al in the mediump¢<|QY’| andw,, is the frequency of the
atomic resonancéu) < |v). When the modulation depth is
sufficiently large, the forward propagating signal fiefd

with a carrier wave vectok nearks=w,/c undergoes Bragg
scattering into the backward propagating fi¢ld with the
wave vector k. This scattering of counterpropagating fields
into each other forms a standing-wave pattern and modifies
the photonic density of states such that a range of frequencies
{b) e appears in which light propagation is forbidden—a PBG

A{Z\ [19]. Both components, of the signal field dispersively
v interact with atomsB via the transitionjc)g— |d)g with the
ﬁfoi m detuningAg. Thus atoms of specieé® simultaneously pro-
B vide EIT for the slowly propagating probe field, and its
cross coupling with the signal fielé, [13,15,16.

FIG. 1. (Color onling (a) Atomic level scheme involving two We assume that initially the signal pulse of duratibn
species of atoma andB, aimed at trapping the signal fief] in a enters the EIT medium, where, in the absence of the
PBG and its cross coupling with the slowly propagating probe fieldstanding-wave field2,=0, it is slowed down and spatially
&y (b) Probe pulse propagation and interaction with the trappeccompressed, by a factor Qfg/c< 1, to the lengthz,,
signal pulse. =plT,. Once the signal pulse has been fully accommodated

in the medium of length., which requires that,,.<L, it is
study the cross-phase-modulation between the fields while inonverted into a standing-wave polaritonic excitation accord-
Sec. IV we discuss an explicit realization of a deterministicing to the procedure described[ih9]. To this end, the driv-
controlled-phasgcPHAsE logic gate between two single- ing field O/}, corresponding to the input group velocit§

photon pulses representing qubits. Our conclusions are sure-|()"}]2, is adiabatically switched off and the pulse is halted

marized in Sec. V. in the medium. Next the standing-wave fidly is switched
on, thereby establishing the PBG, and finally the driving field
Il. EQUATIONS OF MOTION is switched back on to a Va|L.(égA)>QgA()), releasing the sig-

nal pulse into the PBG. The amplitude of the photonic com-

_ We consider a cold atomic medium containing two Spe-,,nent of the signal pulse, which is responsible for the cross-
cies of atomsA and B, with N-shaped level configurations

[Fig. 1(a)]. Atoms A andB correspond to two isotopic Spe phase modulation, (is) nO(V\g larger than that at the input by a
. . - [ 0_A A :
cies of trapped alkali-metal atoms subject to an appropriatfaCtor of Vus/vg=Qy"/Qy, [12]. Then, upon propagating

oo . through the medium with the group velocity, the probe
magnetic field that shifts the Zeeman sublevels and tunes t Iseginteracts with both forwa?d anpd backvt\?grd cofnponents
relevant atomic transitions outlined below. All the atoms ar . . o .
assumed to be optically pumped to the ground stitag, of the signal over its localization lengty,. [Fig. 1(b)]. For a

; ; : large enough product of the signal field intendify|?> and
Sg’sns]isé 2 Zfiig?dg é?ﬁ/ci’:armi 'gfgrrj‘izt t\;\gtnhSitt\i/\c/)c;tsrunnnﬁ'g;wave interaction timelL/v,, both pulses accumulate uniform con-
9 AB) ABIYAB ditional phase shifts which can exceedFinally, the signal

V\;itr th? Rdabi frerc]]_uen_cieﬁ_d ) respectivdely. In :]he abseince pulse is released from the medium by reversing the sequence
of levels| )ap, this situation corresponds to the usual EIT that resulted in its trapping.

for the weak(quantum signal £ and probec, fields which Let us now consider the scheme more quantitatively. To

are acting on the transitions)a g—[a)a: In the vicinity of oo ine the quantum properties of the medium, we use col-
a frequency corresponding to the two-photon Raman resq-

. . . ~ (1)
nances/b)ag— [C)ap, the medium becomes transparent forq ective SZIOWW Vafyif)‘g atomic - operators ‘Tuv(z't)
both weak fieldd9—11]. This transparency is accompanied =(1/N)Z 2 |u)) (vj|le”“w!, averaged over small but macro-
by a steep variation of the refractive index. AtorAsin ~ Scopic volume containing many atoms of speciesA,B
addition, dispersively interact with a standing-wave classicafround positiorz [11]: N3 g=(Nag/L)dz>1, whereN,g is
field having the Rabi frequencf(z)=2Q.cogkz) and de- the total number of the corresponding atoms. The quantum
tuning A>Q from the atomic transitiorjc)a— |d)a. This ~ radiation is described by the traveling-wavultimode
field induces a spatially periodic ac Stark shift of le\®,,  electric field operators&_,(z,t)=2qag(t)e*‘qz and &,(z,1)
that results in a spatial modulation of the index of refraction:zqag(t)eiqz, where an is the annihilation operator for the

for the signal field according taL9] field mode with the wave vectds;+q,k; being the carrier
c 4A wave vector of the corresponding field. These single-mode
on=——cog(kg), operators pgssess the standard bosonic commutation rela-
Ug Wgp tions [alq,a?’ ]:5” 5qq’v which yleld [&(Z),SF(Z’)]:LQJ (S(Z
whereAS:Q§/A is the amplitude of the Stark shift/vsis  —Z'). In a frame rotating with the frequencies of the optical

the ratio of the speed of light in vacuum to the group velocityfields, the interaction Hamiltonian has the following form:
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iNA A _ ik k258 Es (5T5 )
H==" de{Aa' Qal €62 + E_e7k7) 5 aggm:%ag?_ 98 9p'Cptp) Gtenn) s 30
Ag s QP
- e|k<A> - 20 cogk) 50} + 7iNg J dZ{Ag5®) where sk=k;—k is the phase mismatchy,= Vbc A)A oA
L andyg= ?’Lc) are the Raman coherence relaxatlon r 2 is
_ (B) |k z"(B) _ ikz -ik the spontaneous decay rate of stath, and F" are
9 5 e U ~QgTen 9e [8 erie Z] } 6-correlated Langevin noise operators associated with the re-
+H.c., (1) laxation.
To solve the coupled set of EqRa), (2b), and(3a—(3e),
A 0B (28 e-S1) () \/(8)7 ~ N
where g(B) 7 &) [(2heSD),  Gp=pay \@ap /(2 €&SL) we introduce new quantum fields, and W, (dark-state po-
andgg= go | (2h€SL) are the atom-field coupling con-

laritons[11]) via the canonical transformations
stants,goM be|ng the corresponding atomic dipole matrix el-

ement andS the cross-sectional area of the quantum fields. W, = cosbE, - sin O N2, (4a)
To facilitate the analysis, we decompose the induced atomic
coherences as - R R

W, = COSOAE, — in Ou\NATED, (4b)

a_g;) - a_;gA)eikz_}_ &B;A)e—ikz,

&gé) - a_;((:A)ei(k—kd)z + a_géA)e—i(k+kd)z,

where the mixing anglesfpg are defined as tardnp
=0apVNag/ QP It follows from Egs.(3b) and (3d) that

~(B) _ ~+(B) gkz | ~=(B) ik - o VNB(}{)BC
Ocd — Ocd e t0q €7 qu: )
i cosfy  sinfg
and make the transformations
58 — 620, 618 — 62 B e
Using the slowly varying envelope approximation, we have = cos@A sin 0A ’

the following equations of motion for the weak quantum

fields:

, inside the medium the photonic component of each po-
Iarlton is proportional to cog, while the atomic component

d d\~ . ~(B) to siné, of the corresponding mixing anglé. From Egs.
a7t + C Ep(z,t) =igpNpopy , (2a) (2a), (2b), and(3a—(3e), the equations of motion for polari-
tons are then obtained as
i i ~+(A) A+(B dJ d\ -~ ~ LA ~
(&t e ) E(20) =igaNaTHy” +igeNedey” - (2b) (5 + vpﬁ_z>q’p =iV tingl Wy + 7, (58

The evolution of the atomic operators is governed by the

Heisenberg-Langevin equatiofis0], which are treated per-
turbatively in the small parametegg/ Q)4 and in the adia-

batic approximation for all the fieldsl1],

~£(A) :

. J .
Oba = Q(A)|:< RN 2|A> |ASU+(A) 2|ékzi|

(3a)

(3b)

. i |9 e GAEIE +EE)
oha == @[(E + VB)UEE? - IA—BUEE?

(30

(3d)

9 d\a S S
(Eivs(9_2>‘1’i=-f<s‘lfi+”7'p‘1’r+'ﬁ‘l’+“Ts’ (5b)

wherev,=c cos'flg andvs=c cos'd, are the group velocities,

I, =V, and |;=¥IW,+¥T¥_ the intensity(excitation-
numbej operators for the probe and signal polaritons, re-
spectively,ks ,= YagSiMPda g the absorption ratesi , the as-
sociated S-correlated noise operators, 7
=coS6,sirthaga/ Ag the cross-phase-modulation rate be-
tween the polaritons, ang=Agsir?6, the coupling rate of
the forward and backward propagating components of the
signal polariton. In Eq(5b), the linear phase modulation has
been absorbed in the signal polariton via the unitary trans-
formation ¥, —W¥,e?#, and we have assumed that the ef-
fective phase matching condition2z<1 remains satisfied
for 0<z<L [19]. We have also assumed that the cross ab-
sorption is negligible, which requires thAg> ygB) [13,14.
Then the cross-phase-modulatigns purely real and is pro-
portional to the intensity of the photonic component of the
signal polariton, cdg,=£1E,/ (PIW,), multiplied by the in-
tensity of the atomic component of the probe polariton,
Sif0s=Ngo /(W)
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Equations(5a and (5b) are similar to the corresponding is the density of atomé. Due to nonzero values df, the
equations derived for the case of cross-phase-modulation inteapped signal pulse spreads and eventually leaks out of the
doped photonic crystdP1]. Their general analytical solution medium at a rate
for arbitrary initial and boundary conditions of the traveling-

2.2

wave quantized fieldﬁfpyi is not known. However, when the Ky = %, 0=<|ql < Blvs.
absorption is small enough to be neglectsee below, for a B
given time and space dependence of the signal-polariton inye can estimate the bandwidth of the signal pulse from its
tensity(z,t), the solution for the probe is spatial extent asigq~ v/ (cL) <|Q A>|2/( (A)c), thus obtain-

A A A ing the upper limit for the leakage rate

‘Pp(z,t):\pr(O,T)exp[ii f IS(Z’,7'+Z’/vp)dZ’], (6) p

vpJo K< — (9)
mCc°BL

where 7=t-2/v, is the retarded time. An analytic solution
for the two counterpropagating components of the signal poHence, the interaction time,=L/v, is limited by tj,
lariton can be obtained only in the case when the spatiak maxXxs, kp, xi}<1. The corresponding fidelity of the
dependence of the probe-polariton intensity can be neglectertoss-phase modulation is given by

on the scale ofzq, I5(z,t)=I1,(t). This requires thav,T, F=exd— (kot ko + ki)L/ 10

> 7, WhereT,, is the duration of the probe pulse Alterna— A= (ks i+ k)L . (10
tively, the spectral width of the probéw,~ T‘ should sat- Thus, to minimize the standing-wave field-induced absorp-
isfy dwp<vp/ze.. Then Eq.(5b) can be solved using the tion of the signal polariton, due to the enhanced relaxation of
Fourier transform techniqu¢19]. The solution for the Raman coherence, and index modulation exceeding the
polariton-mode operatorg(t) = fdz € %, (z,1) is given by transparency window, the ac Stark shift should be limited by

(A>A |Q<A |2
JAD) = PO cogxt) ~i° Sln()(t) (7a) As< RN 1D
At the same time, the bandwidth of the probe is limited by
f//‘l(t) - i@;q(O)e“;’s(t)Esin(Xt), (7b) the length of the mediurf22],
X |Q((jB)|2 _ |Q£|B)|2kp
where y=\g% +,82 Note that all the spatial modeﬁ of dup < \’/gﬁNsyéB)L/C - ,}/(aB)V"(SW/Z)pBL, 12

the signal poIanton acquwe the samendependent phase . _
shift ¢>s(t 77f p(t )dt’, with Ip(t) \I,T(O r)llfp(o 7. It fol- wherepg=Ng/(SL) is the density of atomB.

lows from Eqgs.(7a) and (7b) that a S|gnal pulse containing _ Under these conditions, as can be deduced from &gs.
only the modes With|<,8/vg will be strongly trapped in- (5b), and (8a—(8¢), the time evolution of the system is de-

side the medium, its wave packet periodically cycling be-SCribed by the effective interaction Hamiltonian

tween the forward and backward components while interact- % A
ing with the probe polariton. We then obtain Hey == J dZ ¥ W, (VI + W)
i = b0 e a
\if_(z,t) = i\if+(z, O)ei‘:”s(t)sin(ﬁt), (8b) Its first term is responsible for the cross-phase-modulation

between the probe and signal polaritons, while the second

= _3 i5(2) term describes the scattering between the forward and back-
Vp(z,1) = ¥(0, e, (80) ward components of the signal polariton into each other.
where $p(2)=( 7lvy) féis(z,)dzli with is(Z) Since t_he p_ro_be_: polariton propagates with th_e group_velqcity
vp, the implicit time dependence of the effective Hamiltonian

=l(z,0)¥,(z,0), is the probe phase-shift operator. _ _ . . -
Equations(8a—(8c) are our central result. Let us dwell (1§) is contained in the probe polariton operators ‘Hg

upon the approximations involved in the derivation of this="Yp(z—¢), where{=vt. Employing the plane-wave decom-
solution. During the conversion of the signal pulse into aposition of the polariton operators

standing-wave polaritonic excitation inside the PBG, the N a

nonadiabatic corrections resulting in its dissipation are neg- Wo(2) = > ‘ﬁge'qz’ (143
ligible provided the medium is optically thidk 1], a

GNees _ o1, V2= g (14b)
CYa

where s,= ﬁ’ab w;/-t\)) /(2hecy! ) is the resonant absorption Where the mode operato«;t? obey, to a good apprOX|mat|on

cross section for the tranS|tldb>A—>|a>A and pa=Na/(SL  [11], the bosonic commutation relat|0|ﬁ$ﬁ,¢/fq = Oqqr
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(a) (b)

AR .

2
o FIG. 2. (Color online (a) Probe-polariton
= propagation and interaction with the trapped sig-
e“ N nal polariton. (b) Probe (signa) phase shift
= bp(2) = b2 tmaxt 2lvp) [P) =(z,1)] as a
& function of A[t].
4 0

z,t

we have [\ifi(z),\iff(z’)]zLéij 8(z-7'). It is then easy to Mmain limiting factor being the collisional relaxation of Ra-
show that the first and second terms of the effective Hamilman coherence. In Fig. 2 we show the results of our numeri-
tonian (13) commute. cal simulations of the probe polariton propagation and inter-
action with the trapped signal polariton. One can see in Fig.

2(a) that the trapped signal polariton slowly spreads with the

. CROSS-PHASE-MODULATION rate x; and simultaneously undergoes rapid spatiotemporal

. . : . , oscillations, whose period is determined by the reflection rate
In this section we study the nonlinear interaction betwee _ : . . o
. . . : osc= 7/ B, while the spatial amplitude is given by the pen-
the signal and probe polaritons by exploring the classical as?sc.. _ S
gtration depthmvg/(2B8)=mc/(2Adarfd,) which is much
well as fully quantum treatments of the system. . . : .
smaller than its spatial extent.. The resulting phase shifts
of the probe and signal pulses are shown in Fig).2
A. Classical fields
) ) ) o ) ) B. Quantum fields: The evolution operator
We begin with the classical limit of the theory, in which
h - di laced by th gi We now turn to the fully quantum treatment of the system.
the operators?’,, . andl, s are replaced by the corresponding gjyen an input state of the probe and signal polaritdns),

¢ numbers. Let us consider two single-photon pulses, whichy,s giate of the system subject to the effective interaction
upon entering the medium, are converted into two polaritons, 4 miitonianH « evolves according to
€

each containing a single excitation,

L |[D(1)) = U ()| Pin), (18)
Y
Ef I dz= T_Ef lpdt=1. (15) where the evolution operatdi(t) is defined via
Lot
Then the conditional phase shifts, accumulated by the probe u(t) = exp(— lf Heﬁdt’>. (19
and signal pulses during the interaction, are given by o
7L géL coSbptartby We are interested in the output state of the system at time
Gp= == T @. (16)  t,,>L/v, when the probe pulse has left the active medium.
Up B Since the first term of Hamiltoniaf13), which is responsible

We note again that the phase shift is proportional to the infor the cross-phase-modulation between the probe and signal
tensity of the photonic component of the signal polariton, agolaritons, commutes with the second term, which describes
attested by the presence of the ‘sterm in the numerator the scattering between the forward and backward compo-

of Eqg. (16). nents of the signal polariton, the evolution operdtt®) can
Expressing the atom-field coupling constagtthrough  be factorized into the product of two commuting operators
the decay ratey of the corresponding excited state as U, and U,;, corresponding to the respective terms of the
Hamiltonian,
3mCy
9= 2k28|_’ Uout: UIUII : (20)

Using the plane-wave decompositions for the polariton op-
; (A _ (B 20 s 1O0B2 (5 < g p p p p
and assuming thaty,"=v,” and gANA>|Qd * (vs=c), erators, Egs(14a and(14b), and recalling that in Eq13)
from Eq.(16) we have A A .

V,=W¥,(z-¢) with {=vt, we have

_ 3myd O Pes _ i bt 7S (gatia 4 Jatsa
- 2k‘2)AB|QEjB)|ZSpA (17) U| - ]c.:'! exﬁil(ﬁ{ﬂpp {ﬂpp% (¢+ ¢+ + ¢— ¢—):|l (213)

For realistic experimental parameters, relevant to a cold . A

atomic gas(T=1 mK) with L=1 cm, pag=102cm=3, S Uy = [T exdi Btou Ty + gy (21b)
=108 cm?,  w,=3x10%rad/s, Qf=5x10°rad/s, q

QgB):ZX 10’ rad/s,Ag=A¢=1CP rad/s,y,4=10" s}, and  Note thatU, does not contain time explicitly, because for
Yoo=10° 571, we obtaing= 7 with the fidelity 7/=0.98, the  t,,> L/v, the cross-phase-modulation is over, as the probe
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time L/v, is contained implicitly in¢p=7(L/v,). Below we
will employ the evolution operator of Eq$20), (213, and
(21b) to calculate the output state of the system for the coqft)
single-photon and coherent input states. i sin(Bt)

where ¢ is given in Eq.(16). These equations are notably
different from those obtained for single-mof&8] and mul-
Consider first the evolution of two single-photon input timode copropagating field46,18 because all parts of the
pulses, which in the medium correspond to the initial state probe pulse interact with the whole signal pulgmd the
other way aroung which is reflected in the spacg&ime)
|Pin) = |1P> ® |1 @0, (22) integration. Similarly to the cases discussed in Refs.
s [16,18,23, only in the limit $<1 do Egs.(279 and (27b
reproduce the classical result,

pulse has already left the medium. However, the interaction - |¢v c_
(W.(z,1)) = a(2)ex J |ap(7')|2dt’

(27b

C. Single-photon states

consisting of two single-excitation polariton wave packet

11 =2 &1, |1,)=2 &1D,
P ap Pr q ¢p:%J|a+|2dZ’:vﬂJ|S(Z')dZ', (283)
P

where |1%)= "0} and |1%)=yA70). The Fourier ampli-

tudes§q+, normalized as (&) ,[°=1, define the spatial en- _ %f 24t
velopesfID (2== gq €9z of the probe and forward signal bs= |ap|
pulses that |n|t|aIIy(att 0) are localized around=0 and

z=L/2, respectivel\[see Fig. 2a)]. After the interaction, at Whereby a phase shift af can be obtained when

t
=y f 1,(t)dt’, (28b)
0

time t,,>L/vp, the output state of the system is found to be
is — f |, |%dz —f |apl?dt’ =
[Poud = Uoud Pin) = €[1;) @ [COY Btow| 1) ® |0-)
+i Sin(Btew|0:) ® 1], (23)  This restriction on the classical correspondence of the coher-

. ent states comes about since, for large enough cross-phase-
where|1)=X,£J|17% with |129=479"0). Thus, while the modulation ratesy, these states exhibit periodic collapses
signal pulse periodically cycles between the forward andand revivals ash and ¢v,/c change from O to 2. This fact
backward modes, the combined state of the system acquiragverely limits the usefulness of weak coherent states for QI
an overall conditional phase shifi=7L/v,. When¢=mand  applications based on the polarization degrees of freedom of
tout IS such thatst,,=2=n (n being any integer the output  optical fields.
state of the two photons is given by Let us also calculate the time evolution of the input state

|q)out> == |(Din>’ (24) |q)in> = |ap> ® |a+> ® |0_>' (29)

which can be used to realize a deterministic controlled-phas¥Sing Eds.(20), (218, and(21b), and the fact that
(cPHASH logic gate between the two photons representingsxdigt(a’b + b'a)]|n,)|0p)
qubits, as described in Sec. IV.

1/2
) kZ (E) [cos B i sin(BY (N - Kk, (30)
=0

D. Multimode coherent states

Consider finally the evolution of input wave packets com-wherea’,a andb',b are the bosonic creation and annihila-
posed of the multimode coherent states tion operators for the corresponding field modéd], we
obtain a rather cumbersome, but nevertheless useful result,
lay =T 1a®), |ay=1Ilad), loo=]Il0%. (25
ap q q

|(I)OUT> = UOUt|(I)in>

1 2 |
The sta:teiap> and |0Az+> are the eigenstates of the input op- -1] a2 5 (agp)ml(agp)mz...(agp)ml
er?tors\lfp(o,t) and¥.(z,0) with the corresponding eigen- o S — Vm imy ! - my!
values

1 2 | 19 2
_ | XM l(m) ) -+ [(m)ge) @ [T el
ap(t) = ape ™, a,(2=3 ale®.  (26) g
9 q XE [aﬂei ¢(m1+m2+---+m|)]n
From the operator solution®), the expectation values for n
the polariton operators are then obtained as n ke
P P > [008Btou) ™ Sind o) I

f |a.(2)|%dZ } (2739 k=0 vk ! (n=k)!

do—1 [(n=k)DIK).

(W (z,t) = ap(r)exp{ (31
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"bﬁ\ PBS Ivf> O /\ CPHASE logic gate between two traveling single-photon
O i 0 pulses representing qubits. To this end, suppose that the qubit
'f? i basis stateg|0),|1)} are represented by the verticAl)
i o 1> =|0) and horizonta|H)=|1) polarization states of the pho-
19> /\ > 2 /\ ton. After passing through a polarizing beam spli(teBS),

the vertically polarized component of each photon is not re-
flected, while the horizontally polarized component is di-
rected into the active medium. Employing the procedure dis-
cussed above, whereby thely) component of the signal
pulse is first trapped in the medium, then interacts with the
|Hp> component of the probe, and finally is released, the
two-photon  state|®;,)=|H,Hy acquires the conditional

. phase shiftr, as per Eq(24). At the output, each photon is
For ¢=m, one hase?M*™*" *W=11, the “+1" or “-1"  recombined with its vertically polarized component on an-
corresponding to the surm,+m,+---+m,) being, respec- other PBS, where the complete temporal overlap of the ver-
tively, even or odd. Accordingly, Eq31) simplifies to tically and horizontally polarized components of each photon
is achieved by delaying th¥) wave packet in a fiber loop or

1
e €
v> PBS

FIG. 3. (Color onling Proposed implementation of the optical
CPHASElogic gate between two single-photon qubits, using polariz-
ing beam splitterPBS’9, and 7 cross-phase-modulatiofXPM)
studied here.

1 o922 | sending it though another EIT vapor cell. The resulting trans-
| Do = 5(|ap> +l-ap) @ [ 172X (af) formation corresponds to the truth table of ttreHASE gate,
q n
n —K[: k N
s, [COtBo I SIBtow 'y oy [VeVe) — [VaVa,
k=0 vk! (n=Kk)!
1 _ 2 |VpHS> - |VpHS>=
+=(lay = |- ap) @ [T 473 (- o)
q n
H, Ve — |H Ve,
n KT K | p p
XE [COiIBtOL’Ji:!n( [| T(';:(,Btouf)] |(n_ k)g>|k:q>,
- k! (n-Kk)!
k=0 ' HaHY — = [HoHo). (34)

(32)

Together with the Faraday rotations of photon polarization
where|—ap>=qu|—agp).Aparticularly simple and important (implementing arbitrary single-qubit rotationsnd linear
case is realized fobt, = (7/2)n (n being any integer when  phase shift, therPHASEgate isuniversalas it can realize any
either sir{Bt,,) or cosBt.,) is zero and the signal polariton unitary transformatiorl].
is found in one of the four possible staties)® |0_),|—a,)
®10.),|0,)®lia_), and|0,)®|-ia_). As an example, when
Btow=2mn, we have

V. CONCLUSIONS

In this paper we have proposed a scheme for highly effi-
1 cient Kerr nonlinear interaction between two weak optical
e §(|ap> +[- ap) ® la,) @ [02) fields. We have shown that large conditional phase shifts and
entanglement can be obtained in atomic vapors, in which a
weak (quantum probe pulse, upon propagating through the
medium, interacts with a weak signal pulse that is dynami-
cally trapped in a photonic band gap created by spatially

eriodic modulation of the electromagnetically-induced-

Cally cisinguishable states of o fiels. Such entanglemenj 2NSPAENCY resonance. The attainabehase shift acco-
y 9 X 9 anied by negligible absorption and spectral broadening can

of coherent Schrodinger-cat statg®s] can find important

applications in schemes of quantum-information processin%ersal quantum logic gate between the two single-photon

and communication with continuous variabl@§]. Thus, us-
; - pulses. The proposed scheme may therefore pave the way to
ing our scheme, one could contemplate the feasibility of de’ inf . licati h as d inistic all
terministic quantum computation with optical coherent Stateguqntum-m ormation applications, such as deterministic all-

optical quantum computation, dense coding, and teleporta-
[27]. :

tion [1].

Before closing, we note that our central equatigfa),
IV. DETERMINISTIC LOGIC GATE (5b), and (8a—(8c) and consequently the main results Egs.
(23), (273, and(27b) are similar to those obtained by us for

Utilizing the scheme of Fig. 3 and the results of Sec.the case of cross-phase-modulation in doped photonic crys-

[ll C, one can realize a transformation corresponding to thdals[21], whose practical realization represents a formidable

1
+ 5(|a’p> - |_ a’p>) ® |_ ) ® |0—>r (33

be used for high-fidelity implementation of tle®HASE uni-
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PACS. 03.67.-a — Quantum information.

PACS. 42.70.Qs — Photonic bandgap materials.

PACS. 42.50.Gy — Effects of atomic coherence on propagation, absorption, and amplification
of light; electromagnetically induced transparency and absorption.

Abstract. — Giantly enhanced cross-phase modulation with suppressed spectral broaden-
ing is predicted between optically induced dark-state polaritons whose propagation is strongly
affected by photonic bandgaps of spatially periodic media with multilevel dopants. This mech-
anism is shown to be capable of fully entangling two single-photon pulses with high fidelity.

Introduction. — The main impediment towards the use of single photons in schemes
for deterministic quantum logic and teleportation [1] as very robust and versatile carriers
of quantum information [2] is the weakness of optical nonlinearities in conventional media.
A major trend aimed at the enhancement of optical nonlinearities exploits one-dimensional
(1D) periodic distributed Bragg reflectors and 2D- or 3D-periodic photonic crystals (PCs),
where light can be slowed down or trapped via multiple reflections in the vicinity of photonic
bandgaps (PBGs) [3]. Giantly enhanced nonlinearity has been predicted when dopants with
transition frequencies within the PBG are implanted in the structure, so that light near
such frequencies resonantly interacts with the dopants and is concurrently affected by the
PBG dispersion [4]. The resulting soliton-like transmission of very weak pulses within the
PBG while filtering out spurious noise is highly advantageous for classical communication [5].
However, this mechanism is incompatible with the goals of quantum logic and communications,
particularly with photon-photon entanglement, because of the quantum noise associated with
resonant field-atom interactions.

Another pathway to enhance the nonlinearities is based on electromagnetically induced
transparency (EIT) in atomic media, which comes about when classical driving fields induce
coherence between atomic levels and transform the weak fields into atom-dressed dark-state
polaritons [6,7]. The ultrahigh sensitivity of the EIT polaritonic dispersion to a small field-
induced Stark shift of its atomic level can result in an appreciable nonlinear phase shift,
impressed by one ultraweak field upon another [8]. Notwithstanding this promising sensitivity,
EIT-polariton entanglement by a large conditional phase shift of one photon in the presence of
another (also known as cross-phase modulation) faces serious challenges in spatially uniform

© EDP Sciences
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Fig. 1 — (a) Level scheme of atomic species A and B. Atoms A convert the input signal field &y, at
frequency outside the PBG to the trapped field £+ at frequency inside the PBG. Atoms B provide
EIT for the probe field £, and its cross-coupling with the signal field £+. (b) 2D-periodic photonic
crystal (PC) having the density of modes p(w), is doped with atomic species A and B. (c¢) Interaction
and the resulting phase shift of the probe and signal pulses.

media. One drawback of these schemes has been the mismatch between the group velocities of
the probe pulse moving as a slow EIT polariton and the nearly free propagating signal pulse,
which severely limits their effective interaction length and the maximal conditional phase
shift [9]. To enable long interaction times and thus large conditional phase shifts in a medium
of finite length (up to a few centimeters), the group velocities of both interacting pulses should
be small [10,11]. This, however, imposes a limitation on the photonic component of the signal
polariton whose magnitude determines the phase shift. Copropagating pulses pose yet another
difficulty: since the phase shift of each pulse is proportional to the local intensity of the other
pulse, different parts of the interacting pulses acquire different phase shifts, which results in
their spectral broadening.

Here we put forward a mechanism that may produce strong photon-photon interactions
along with suppressed quantum noise and give rise to their entanglement with high fidelity, by
combining the advantages of their dispersion in PBG structures and of the strongly enhanced
nonlinear optical coupling achievable via EIT in an appropriately doped medium. The main
idea is that a single-photon signal pulse is adiabatically converted into a standing-wave polari-
tonic excitation inside the periodic structure. This trapped polariton, having an appreciable
photonic component, can impress a large, spatially uniform phase shift upon a slowly propa-
gating probe polariton. This task can further be facilitated by employing 2D- or 3D-periodic
structures with defects where the two pulses interact via tightly confined modes [3,12,13].

Photon-photon interaction in PBG structures. — The proposed scheme is based upon
a periodic structure containing uniformly distributed dopants —atoms A and B (see fig. 1).
Atoms A, having double-A level configuration and interacting with classical driving fields on
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the transitions |¢)4 — |a)a, |a’)a, with the Rabi frequencies QEIA’A/), respectively, facilitate
the trapping of the signal pulse inside the periodic structure, by converting its frequency from
outside to inside of the PBG. On the other hand, atoms B, having N level configuration and
interacting with the inB) driving field on the transition |¢) g — |a)p, serve to simultaneously
slow down the probe pulse and cross-couple it with the signal.

The following procedure is foreseen to this end. Initially, all atoms A are in the ground
state |b)4, the driving fields Q&A) = 0 and Q;A > T, where T}, is the temporal width

m
of the input signal pulse &;,,. The carrier frequency of &, is outside the PBG, close to the
|b)a — |a’) 4 transition frequency, so that the usual EIT for the input signal due to the A
configuration |b) 4 < |a’)a < |¢) 4 is realized. Upon entering the medium, the signal pulse is
slowed down and spatially compressed, by a factor of v} /c < 1, to the length 2, ~ TinvL,
)|2 is its group velocity inside the medium. Once the signal pulse has fully
accommodated in the medium of length L, which requires that z),. < L, the driving field Q&A )
is adiabatically switched off. As a result, the signal is stopped, its photonic component being

where v/, |Q

converted into the stationary atomic (Raman) coherence aéf) [6,7]. Next, the driving field
QgA) is adiabatically switched on to a value Q&A) > QEIA,)7 converting the atomic coherence
into the signal field £4, whose frequency is inside of the PBG and amplitude is larger than
that of the input signal &, by a factor of \/vs/v] ~ Ql(iA)/Q((jA/) > 1 [7]. Due to the Bragg
scattering of the forward and backward propagating components of the signal pulse with the
wave vectors *k, it remains localized (trapped) within the medium [3]. Both components
&+ of the signal field dispersively interact with atoms B via transition |¢)p — |d)p with the
detuning Ap. This off-resonant interaction causes an ac Stark shift of level |¢)p, thereby
strongly affecting the EIT dispersion for the probe field &,, which interacts with atoms B
on the transition |b)p — |a)p [8]. For a large enough product of the signal-field intensity
|€4|? and interaction time L/v, (v, being the probe group velocity), both pulses accumulate
a uniform conditional phase shift which can reach 7 (see fig. 1(c)). Finally, reversing the
sequence that resulted in trapping of the signal pulse, its frequency is converted back to the
original frequency and the &, pulse leaves the medium.

Let us now consider the scheme more quantitatively. To describe the quantum properties of

the medium, we use collective slowly varying atomic operators &,(LLV)(z, t) = 7= Z;\Zl [ge5) (vl

_iw® . .. .
xe “urt  averaged over a small but macroscopic volume containing many dopants of species

v = A, B around position z [6]: N3 p = (Na,p/L)dz > 1, where Ny p is the total number of
the corresponding dopants. The quantum radiation is described by the traveling-wave (multi-
mode) electric-field operators £1(2,t) = 3_, ad (t)et'* and &,(z,t) = >y ad(t)e's, where af
are the annihilation operators for the field mode with the wave vector k; + ¢, k; being the car-
rier wave vector of the corresponding field. These single-mode operators possess the standard
bosonic commutation relations [af, a§ 1 = 6,;644, which yield [£(z), 5;-[ (2] = Ldi;6(z — 2').
Using the standard technique [6], we perturbatively solve the Heisenberg equations for the

atomic coherences fn(f,, under EIT conditions [6-11] and substitute the solution into the prop-

agation equations for the slowly varylng field operators 5 (2,t). These operators are related

to the polariton operators U, =&, / cos @4 and \I/ =£ »/ cos O, which represent the coupled

excitation of the corresponding field and atomic Raman coherence 0( 9

04 B are defined via tanfa p = ga,B\/Na B/Q( B) , where g4 B = (A B)\/ (4, B)/ (2hepSL)

are the atom-field coupling constants, p,SB being the corresponding atomic dipole matrix el-

ement and S the cross-sectional area of the quantum fields. Note that the amplitude of the

. The mixing angles
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photonic component of each polariton is proportional to the cos 8, of the corresponding mixing
angle §,. Under the Bragg resonance condition k ~ 7 /ps, where ps is the structure period,
the equations of motion for polaritons are obtained as

0 0\ - . R . .

(at + v, 82) Uy = —keUy +inlp¥y +i6V + F, (1a)
0 0\ - - e -
e —l—vp& Y, = —kp¥, +inl sV, + Fp. (1b)

Here vy = ccos? 04 and vp = ccos? O are the group velocities, fs = \iﬂ;‘ihr + ‘ift\il, and fp =
\i!T\il are the intensities (excitation numbers) of the signal and probe polaritons, respectively;

Ksp = 'yé B) gin2 9 A, are the absorptlon rates, 'ch) being the Raman coherence decay rate

of the corresponding atoms F, s,p are the d-correlated noise operators associated with the
relaxation; n = [1 +27d )/(2AB)] cos? 04 sin® Opg’2 /Ap is the cross-coupling rate between the

polaritons, gz = p&f)\/wdp )/(2heoSL) being the atom-field coupling on the transition |¢)g —

|d)p and 7((13) the decay rate of |d)p (for Ap > 7((1 ). the cross-absorption vanishes [8-10]
and then 7, being purely real, represents the cross-phase modulation rate). Finally, § =
%&UPBG cos? 04 is the Bragg reflection rate, dwppc being the PBG bandwidth.

Equations (1) constitute the starting point of our analysis. Their general solution, for
arbitrary initial/boundary conditions of the traveling-wave quantized polaritons \i/p,i, is not
known. When absorption is negligible (see below), for a given time- and space-dependence of
the signal-polariton intensity I;(z,t), the solution for the probe is

z
U, (2,t) = ¥, (0,7) exp [zvi/ (1 + 2 Jup) de |
p Jo
where 7 =t — z /v, is the retarded time. An analytic solution for the two counter-propagating
components of the signal polariton can be obtained in the long probe limit, i.e., when
the spatial dependence of the probe-polariton intensity is negligible on the scale of zj:
I(z,t) ~ I,(t). This requires that v,T, > 20, where T}, is the duration of the probe pulse (its
spectral width being dw, ~ T,;' < vp/zioc). Then eq. (1a) is soluble by the Fourier transform

Uy(z,t) =L [dg eilqzdzi(q t), with the result
bi(g,t) = 1y(g,0) ¥ ® cos(xt)—z‘%sin(xt) : (2a)
D(g,t) = iy (—q,0) e“*“)gsin(xt), (2b)

where x = /202 + 32 and ¢,(t) = nfo dt', with I,(t) = ¥}(0,7)¥,(0,7). Thus all
the spatial modes Ql&(q, = [dz eﬁqzllli(zﬂf) of the signal polariton acquire the same g-
independent phase shift g{)s(t). It follows from eqs. (2) that a signal polariton composed of
modes with |¢| < [/vs will be strongly trapped inside the medium, its wavepacket periodi-
cally cycling between the forward and backward components while interacting with the probe
polariton, yielding

U (z,t) = Uy(z,0) eids(t) cos(ft), (3a)
_(2,t) = il (2,0) e O sin(st), (3b)
U, (z,t) = W,(0,7) ¥ (3¢)
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where ¢,(z) = * fo +(2)d2’, with I,(z) = \IIE_(Z,O)\I/J,_(Z,O), is the probe phase shift.

Let us dwell upon the approximations involved in the derivation of egs. (3). During the
conversion of the signal pulse into a standing-wave polaritonic excitation inside the periodic
structure, the nonadiabatic corrections resulting in its dissipation are negligible provided the
medium is optically thick, ¢a4paL > 1, where ¢4 is the resonant absorption cross-section for
the transition |b)4 — |a’)a and ps = N4/(SL) is the density of atoms A [6,7]. After the
signal pulse has been trapped in the PBG, due to nonzero values of g, it gets spatially distorted
(spreads) at a rate kg ~ ¢*v2/(nf3) (0 < |q| < B/vs). We can estimate the bandwidth of the
signal pulse from its spatial extent as d¢ ~ vs/(cL) < |Q§A)|2/(7¢(1A)c), thus obtaining the
upper limit for the distortion rate kg < 2v3/(rcL?*0wppg). On the other hand, the bandwidth
of the probe is limited by the length of the medium via dw, < |Q;B)|2[9%NBWéB)L/c]*1/2 =
\QéB)\QkphéB) 3m/2ppL|~t, where pp = Np/(SL) is the density of atoms B [14]. Finally,
the interaction time ¢,y = L/v, is limited by ting X max{ kg, Ks, /sp} < 1, and so the fidelity
of the cross-phase modulation is given by F = exp|—(kq + ks + K;p)L/vp]

Consider first the classical limit of egs. (3), Where the operators \I' .+ and I s are replaced
by c-numbers. Then for two single-photon pulses 1 [I,dz = 2 [ I, dt ~ 1, the conditional
phase shift accumulated by the probe and signal fields during the interaction is given by

ggL cos? 04 tan®0p
CAB

¢p:¢s:

¢. (4)

Note that the phase shift is proportional to the intensity of the photonic component of the
signal polariton, as attested by the presence of the cos? 4 term in the nominator of eq. (4).
For realistic experimental parameters, relevant to a doped periodic structure discussed below,
one can obtain ¢ ~ 7 (see fig. 1(c)) with the fidelity F' ~ 1.

We now turn to the fully quantum treatment of the system. To compare the classical
and quantum pictures, we consider first the evolution of input wavepackets composed of the
multimode coherent states |a,) @ |ay) ® [0-) = qu lag?) ® I1, %) @11, \Oi). States |a;)
and | ) are the eigenstates of the input fields operators £,(0,t) and £, (2, 0) with eigenvalues
ap(t) =32, ap’e " and ay(2) = Y-, e, respectively. The expectation values for the
fields are then obtained as

(Eoteat) = aptren [ [ pa] (50
(Ea(e10) = ar@em | Tt [ et < [ o

These equations are notably different from those obtained for single-mode [15] and multimode
copropagating fields [10,11] because all parts of the probe pulse interact with the whole signal
pulse (and vice versa), as is manifest in the space (time) integration. Similarly to the cases
discussed in [10,11,15], egs. (5) reproduce the classical result only in the limit ¢c/vs < 1,
yielding ¢, = - dz’ and ¢, = Z—S [lapl?dt’. A m phase shift is then obtained for
Too [lag]?dz’ = £ [|ap?dt = m/¢. This restriction on the classical correspondence of
coherent states comes about since, for large enough cross-phase modulation rates 7, these
states exhibit periodic collapses and revivals as ¢ changes from 0 to 27, which limits their
usefulness for quantum information applications.

Consider finally the input state |®i,) = [1,)®|1+)®|0_), consisting of two single-excitation
polariton wavepackets [1, ) = > &7 4 [17 1), where the Fourier amplitudes, normalized as
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>4 &2 |2 = 1, define the spatial envelopes f, 1 (z) = > & L€' of the probe and forward
signal pulses that initially (at ¢ = 0) are localized around z = 0 and z = L/2, respec-
tively (fig. 1(c)). During the evolution, the state of the system evolves according to |®(t)) =
exp[—% fg Hiny dt'] |®in), where Hiy = —% [d= [n\il;f)\i'p(\i/l\iq—i—\i/t\if,)—i—ﬁ(\ili\i/,—&—\ilt\iq)]
is the effective interaction Hamiltonian whose first and second terms commute. The implicit
time dependence of the effective Hamiltonian, due to the propagation of the probe-polariton
pulse with the group velocity v,, is contained in the operator \i/p = \i/p(z — (), with ¢ = vpt.
After the interaction, at time tou; > L/vp, the output state of the system is

[Poue) = /7 |1,) © [cos(Btous) [1+) @ [0-) + isin(Btou) [04) @ [1-)], (6)

where |1_) = Zq €4 [1Z%). Thus, while the signal pulse periodically cycles between the forward
and backward modes, the combined state of the system acquires an overall conditional phase
shift ¢ = nL/v,. When ¢ = 7, transformation (6) corresponds to the truth table of the
universal controlled-phase (CPHASE) logic gate between the two photons representing qubits,
which can be used to realize arbitrary unitary transformation [1].

Possible experimental realizations. — An z-z 2D-periodic lattice of dielectric rods or
semiconductor stacks (fig. 1(b)) [3,12,13], with controlled structural defects and mirror con-
finement in y, appears to be the most suitable structure for realizing polaritonic entanglement
of two single photons, since both the signal and the probe pulses may be confined in the
z-y directions in the vicinity of a “defect” row forming a PC waveguide, thereby avoiding
diffraction losses and focusing the fields to a radius of ~ 1pm [3,12]. Using the double-A
dopants (atoms A), the signal pulse can be trapped in the PC, with the localization dis-
tance zjo. extending over many periods, and interact with the probe pulse via atoms B.
Expressing the atom-field coupling constants g through the decay rate ~ of the corresponding
excited state as g = 3mcy/(2k2SL), and assuming that 7(([4) ~ 7&3) and g3 Na > |le’4)|2
(vs < ¢), we have from eq. (4) ¢ ~ 374 (2k§ABS)_1(QgA)/QEiB)V(pB/pA). Among the
possible dopants, III-V or II-VI n-doped semiconductor quantum dots, having large dipole
moments and level structure conducive to EIT [16], could be the best choice for our scheme,
provided high densities can be achieved. In such single-electron doped QDs, the spin degen-
eracy of the ground and the lowest and higher excited (charged exciton or trion) states can
be lifted with a magnetic field [16], realizing the level scheme of fig. 1(a), where atoms A and
B can spectroscopically be selected (via optical pumping or spectral hole burning) from the
inhomogeneous ensemble of QDs. Thus states |b) and |¢) are represented by the Zeeman-split
spin-up and spin-down states of the conduction-band electron in the QD. The excited states
la)4 and |a’) 4 of atoms A can be the first and the second (or higher) exciton states, while
states |a) g and |d) g of atoms B are the Zeeman sublevels of the lowest excitonic state. Assum-
ing the parameters L ~ 0.1cm, S ~ 107® em?, dwppg ~ 10 rad/s [3,12], pa.p ~ 10*? cm ™3,
wp ~ 3x10% rad/s, QgA) ~ 5x10% rad/s, Q((iB) ~ 2x107rad/s, Ap ~ 10%rad/s, ya,q ~ 107571,
and vy ~ 10*s~! [16], we obtain ¢ ~ 7 with the fidelity F' > 0.98%, the main limiting fac-
tor being the decay of Raman coherence .. Other contenders for observing the proposed
effects include periodic structures fabricated from rare-earth doped crystals, such as Pr:YSP,
in which high-fidelity EIT has experimentally been demonstrated [17], or cryogenically cooled
diamond with high density of nitrogen-vacancy defect centers [18].

Conclusions. — To summarize, we have proposed a new class of multimode quantum-field
interactions involving quantized EIT-polaritons in PBG structures. We have shown that such
interactions allow efficient cross-phase modulation between a propagating probe pulse and a
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trapped signal pulse, whose localization is achieved by an adiabatic four-wave mixing process
that pulls its frequency into the PBG. This localization allows multiply repeated interaction of
the signal with the entire probe pulse. As a result, the combined two-photon state of the system
can acquire a conditional 7 phase shift, which corresponds to the universal CPHASE logic gate.
The phase shift is spatially uniform and the process may have high fidelity. The experimental
realization of the predicted effects requires the fabrication of periodic structures with large
densities of optically active dopants [16-18], which may also find useful applications in laser
technology, optical communication or quantum computation. We note that a similar regime
of giant cross-phase modulation with suppressed spectral broadening is also realizable in cold
atomic vapors using optically induced PBGs [19], on which we intend to report elsewhere. The
proposed scheme may pave the way to quantum information applications such as deterministic
all-optical quantum computation, dense coding and teleportation [1].
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We show that very large nonlocal nonlinear interactions between pairs of colliding slow-light pulses can be
realized in atomic vapors in the regime of electromagnetically induced transparency. These nonlinearities are
mediated by strong, long-range dipole-dipole interactions between Rydberg states of the multilevel atoms in a
ladder configuration. In contrast to previously studied schemes, this mechanism can yield a homogeneous
conditional phase shift of 7 even for weakly focused single-photon pulses, thereby allowing a deterministic

realization of the photonic phase gate.

DOI: 10.1103/PhysRevA.72.043803

Whether or not quantum-information processing and
quantum computing [1] become practical technologies cru-
cially depends on the ability to implement high-fidelity quan-
tum logic gates in a scalable way [2]. Among alternative
routes to this challenging goal, the schemes operating with
photons as qubits [3,4] are of particular interest, since pho-
tons are ideal carriers of quantum information in terms of
transfer rates, distances, and scalability. A current trend
makes use of linear optical elements and photodetectors for
the implementation of key components of quantum commu-
nications and information processing in a probabilistic way
[4]. The desirable objective though is a deterministic realiza-
tion of entangling operations between individual photons,
which require sufficiently strong nonlinearities or long inter-
action times. These are achievable, at the single-photon
level, by tight spatial confinement of the photons, in the very
demanding regime of strong atom-field coupling in high-Q
cavities [5].

A promising alternative is to enhance both the nonlinear
susceptibility and interaction time by employing the ul-
traslow light propagation in resonant media subject to elec-
tromagnetically induced transparency (EIT) [6-8]. In a pio-
neering work, Schmidt and Imamoglu have suggested the
possibility of enhanced, nonabsorptive, cross-phase modula-
tion of two weak fields in the EIT regime [9], provided their
interaction time is long enough. However, upon entering the
EIT medium light pulses become spatially compressed by the
ratio of group velocity v to the vacuum speed of light ¢ [10],
so that the interaction time of two colliding pulses is a con-
stant independent of v. In order to maximize this time, co-
propagating pulses with nearly matched group velocities
have been proposed [11,12]. The essential drawback of such
an approach is the spatial inhomogeneity of the conditional
phase shift, causing spectral broadening of the interacting
pulses, thereby preventing the realization of a high-fidelity
quantum phase gate. Alternative approaches free of spectral
broadening have been suggested [13—15]. In all of them,
however, a rather tight transverse confinement through
waveguiding or focusing of the pulses, close to the diffrac-
tion limit of A2, is needed in order to attain a phase shift of
ar, which is technically challenging.

When the light pulses enter EIT media, photonic excita-
tions are temporarily transferred to atomic excitations
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through the formation of quasiparticles, the so-called dark-
state (or slow-light) polaritons, which are superpositions of
light and matter degrees of freedom [16]. The spatial com-
pression of the pulses leads to an amplification of the matter
components of polaritons. In this paper we propose a hitherto
unexplored mechanism for the collisional entanglement of
two single-quantum polaritons mediated by the long-range
interaction of their matter (atomic) components and demon-
strate its effectiveness. In contrast to the previous schemes
which employ local interactions, namely either two photons
interact with the same atom [11-14] or two atoms after ab-
sorbing the photons undergo s-wave scattering [15], here the
two polaritons interact via the long-range dipole—dipole in-
teractions between their atomic components in the highly
excited Rydberg states. In a static electric field, these internal
Rydberg states, populated only in the presence of polaritons,
possess large permanent dipole moments [17]. We will show
that under experimentally realizable conditions, the condi-
tional phase shift accumulated during a collision of two
single-quantum polaritons is spatially homogeneous and can
be sufficiently large for the implementation of the quantum
phase gate, even for moderate focusing or transverse con-
finement of interacting pulses. We note that quantum gates
for individual Rydberg atoms, coupled by dipole—dipole in-
teraction, have been proposed in [18], while the manipula-
tion of quantum information with mesoscopic atomic en-
sembles using the dipole blockade technique, based on long-
range interactions of atomic Rydberg states, was discussed in
[19].

We consider an ensemble of cold alkali atoms with level
configuration as in Fig. 1. All the atoms are initially prepared
in the ground state |g). Two weak (quantum) fields E| , hav-
ing orthogonal polarizations and propagating in the opposite
directions along the z axis resonantly interact with the atoms
on the transitions |g)— |e, »), respectively. The intermediate
states |e; ) are resonantly coupled by two strong (classical)
driving fields with Rabi frequencies (), to the highly ex-
cited Rydberg states |d1’2). In a static electric field Ege,, the
Rydberg states |d) possess large permanent dipole moments
p=%nqea0ez, where n and g=n;—n, are, respectively, the
(effective) principal and parabolic quantum numbers, e is the
electron charge, and a, is the Bohr radius [17]. A pair of
atoms i and j at positions r; and r; excited to states |d)

©2005 The American Physical Society
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FIG. 1. (Color online) (a) Level scheme of atoms interacting
with weak (quantum) fields E| , on the transitions |g)—|e; ) and
strong driving fields of Rabi frequencies ();, on the transitions
|el’2>—>|d1’2>, respectively. V44 denotes the dipole—dipole interac-
tion between pairs of atoms in Rydberg states |d). (b) Upon entering
the medium, each field having Gaussian transverse intensity profile
is converted into the corresponding polariton W, , representing a
coupled excitation of the field and atomic coherence. These polari-
tons propagate in the opposite directions with slow group velocities
v and interact via the dipole—dipole interaction.

interact with each other via the dipole—dipole potential

p;-P;—3(p;-e,)(p;-e;
47r€y|r; — | ’

where e;; is a unit vector along the interatomic direction. This
dlpole—dlpole interaction results in an energy shift of the pair
of Rydberg atoms, while we assume that the state mixing
within the same n manifold is suppressed by the proper
choice of parabolic ¢ and magnetic m quantum numbers
[17,18]. In the frame rotating with the frequencies of the
optical fields, the interaction Hamiltonian has the following
form:

Vaa=

H=Vy+ Vg, (1)

where the atom-field and dipole—dipole interaction terms are
given, respectively, by

N

Vi=—h2 [g]tgléilg + Qlé{ilel + gégZ&ézg + 026{1262 +Hc],
J

(2a)
N
Vaa=h2 Gy, = 1)) 6. (2b)
i>j

Here N=pV is the total number of atoms, p being the (uni-
form) atomic density and V' the volume; &, ,=|u);(#] is the
transition operator of the jth atom; :5, is the slowly varying
operator, corresponding to the electric field E; (I=1,2),
which obeys the commutation relations [é'l(r),gr,(r’)]
=V&, 8(r—r'); g} is the corresponding atom-field coupling
constant on the transition |g);—|e);; and #AA(r,—r))
={(d|{d|V4dd)|d); is the dipole—dipole energy shift for a
pair of atoms i and j, given by
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1
A(r;-r)=C

J
where O is the angle between vectors e, and e;, and C
=9aPa,! (41eyh) is a constant proport10nal to the product of
atomic dipole moments 9a,= =(d/|p|d,) assumed the same for
both states |d| ,), 9a,,=9a-

Let us introduce collective atomic operators o-M,,(r)
=1/N, E o*’ averaged over the volume element d*r con-
taining N, pd r>1 atoms around position r. Then Egs.
(2a) and (2b) can be cast in the continuous form

=—ﬁpfd3r2 [gzglgeg(r)+910ed(l')]+HC

=1,2
(3a)

Vdd:hpzj f d3r d3r'6'dd(r)A(r—r')é‘dd(r'). (3b)

Using Egs. (3a) and (3b), one can derive a set of Heisenberg-

Langevin equations for the atomic operators &, [7]. When

the number of photons in the quantum fields 3’, is much
smaller than the number of atoms, these equations can be
solved perturbatively in the small parameters g;é'l/ ), and in
the adiabatic approximation for all the fields [16], with the
result

o (1) = Qil[iﬂa(r)] A1), (4a)

)= p [ @A )+ 6, (30)

8151

s 0a (1) =64,(r)G g (r). (4c)

&gdl(r) = Ql

Let us assume that the transverse profile of both quantum
fields is described by a Gaussian e"zﬂw2 of width w, where
r, =|r | is the distance from the field propagation axis, while
the Rabi frequencies of classical driving fields (), are uni-
form over the entire volume V. We may then write g,é,
=g,(r )& (z), where the traveling-wave electric field opera-

tors g;(z):EkafeikZ are expressed through the superposition
of bosonic operators aﬁ‘ for the longitudinal field modes %,
while the (transverse- position dependent) coupling constants
are given by g,(r )=ge /o » with g1=(p,, /iNTiw/2€V,
Pge, being the dipole matrix element on the transition |g>

—le;), V=mw?L, and L the medium length. Under this ap-
proximation, the propagation equations for the slowly vary-
ing quantum fields have the form

J d .
(5 + cﬁ—z)é’,(z 1) =igiNGy, (2), (5)

73K

the sign “+” or corresponding to /=1 or 2, respectively.

043803-2
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Following [16], we introduce new quantum fields
‘f’,—dark state polaritons—yvia the canonical transformations

\frl = CO0S 6]81 — sin GZV”N&gdl, (6)

where the mixing angles 6, are defined through tan’6,
= §12N /|Q|*. These polaritons correspond to coherent super-
positions of electric field (2:1 and atomic coherence é'gd[ op-
erators. Employing the plane-wave decomposition of the po-
lariton operators, one can show that in the weak-field limit,
they obey the bosonic commutation relations

[W,(z), ¥}, (z")]=L&y 8z-z"). Using Egs. (4a)—(4c) and (5),
we obtain the following propagation equations for the polar-
iton operators,

Jd Jd\ a N
(— + v,—)‘l’,(z,t) =—isin®6,a(z,0)W,(z,1). (7)
ot dz

Here v,=c cos?#, is the group velocity, while operator a(z,t)
is responsible for the self- and cross-phase modulation be-
tween the polaritons. It is related to the polariton intensity

(excitation number) operators fIE‘IA',T\IAf, via

1 ([ . .
alz,0) = . f dz' Az —2')[sin®6,Z,(z’ 1) + sin®6,Z,(z',1)],
0

(8)

where the one-dimensional (1D) dipole—dipole interaction
potential A(z—z') is obtained after the integration over the
transverse profile of the quantum fields,

1 2 * 12
A(z-7") = —zf d(p'f drlrle_ri/sz(zez—r')

2C| 2|z-7'|  ~— lz-2'|
=3 T—\Wr 1+27

_ 12 !
X exp(|Z i | )erfc(|Z : |>:|, 9
w w

and is shown in Fig. 2(a).

It follows from Eq. (7) that the intensity operators fl are
constants of motion: Z,(z,7)=Z,(z ¥ v;t,0), the upper (lower)
sign corresponding to /=1 (/=2). Then the formal solution
for the polariton operators can be written as

t

‘f’,(z,t) =exp[—i sinza,f dt'&(z F vt -1'),t")]
0

X \ffl(z ¥ v;1,0). (10)

Equation (10) is our central result. Let us outline the ap-
proximations involved in the derivation of this solution. In
order to accommodate the pulses in the medium with negli-
gible losses, their duration 7' should exceed the inverse of the
EIT bandwidth Sw=|Q[*(y,kol)™!, where 7y, is the
transversal relaxation rate and x,==3\2/(2m)p is the reso-
nant absorption coefficient on the transition |g)— |e;). This
yields the condition (k,L)™"><Tv,/L<1 which requires a
medium with large optical depth x,L>1 [16]. In addition,
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FIG. 2. (a) The 1D dipole—dipole potential A({) of Eq. (9) as a
function of dimensionless distance (=(z—z’)/w, in units of
2C/w? Hz. (b) The resulting phase shift ¢(7)= ¢(vt,L-vt,t) of
Eq. (14) as a function of dimensionless time 7=vt/w, in units of
2C/(vw?) rad.

the dipole—dipole energy shift should lie within the EIT
bandwidth dw for all |z—z’|<L, which implies that |A(0)|
=2\7CIw? < Sw. Finally, the propagation/interaction time of
the two pulses 7o, =L/v; is limited by the relaxation rate vy,
of the &gdl coherence via foy¥gq, <1.

From now on, we assume that 6, ,=6, ie., g;N/|Q[?
=N/|Q,|%, which yields v, ,=v=c cos?6. We are interested
in the evolution of input state

|(Din>=|11>®|12>’ (11)

composed of two single-excitation polariton wave packets

1 N
|11>=z f dzfi(2)W(2)"]0),

where f)(z) define the spatial envelopes of the corresponding
wave packets /=1, 2 which initially (at =0) are localized
around z=0, L, respectively. For such an initial state, all the
relevant information is contained in the expectation values of
the polariton intensities (Z;(z,7))=(®;,|Z(z,1)|®P;,) and the
two-particle wave function [7,11,12]

Fio(zy,20,0) = (01, (21,0 W (25, 0) | Dy, (12)

With the above solution, for the polariton intensities we have
(T 2(z,0))=(T, ,(z F v1,0))=|f, o(z T D)2, which describes
the shape-preserving counterpropagation of the two polari-
tons with group velocity v. Substituting the operator solution
(10) into Eq. (12), after some algebra, we obtain the follow-
ing expression for the two-particle wave function:

F15(z1,20,1) = f1(z) — v1)fo(z0 + vt)expli(z,20.1) ], (13)
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t

d(z21,20,1) =— sin40f dt' Az, —z,-2v(t—-1")], (14)
0

which indicates that the dipole—dipole interaction between
the two single-excitation polaritons results in the conditional
phase-shift ¢(z;,z,,7). We consider a situation in which at
time =0, the first pulse is localized at z;=0 and the second
pulse is at z,=L, while after the interaction, at time 7,
=L/v, the coordinates of the two pulses are z;=L and z,=0,
respectively [Fig. 2(b)]. Then the phase shift accumulated
during the interaction is spatially uniform, and is given by
. 4p (L .4
sin Gf d AR — 1) = 2C 51r21 6' (15)
v Jy vw

(L,0,LIv) =—

This remarkably simple result is obtained upon replacing the
variable (27’ —L)/w— ¢’ and extending the integration limits
to L/w— . The main limitation on the phase shift is im-
posed by the condition |A(0)| < Sw. In terms of experimen-
tally relevant parameters, the group velocity is v
=2|0/*/ (koY) <c(sin?§=1), and we have

w. /%
¢<2 et (16)

To relate the foregoing discussion to a realistic experi-
ment, let us assume an ensemble of cold alkali atoms in the
ground state |g) with density p~ 10" cm™ confined in a trap
of length L~ 100 um. The resonant quantum fields with A\
~0.6 um have the transverse width w~30 um. In the pres-
ence of driving fields with appropriate frequencies, the
single-photon pulses lead to the (two-photon) excitation of
single atoms to the Rydberg states |d) with quantum numbers
n=25 and g=n-1. The corresponding dipole moment is
©4=900eq,, while the decay rate of |d) is 2y,~3 X103 s7!
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[17]. With y,,~10" s and O~ 1.8X 107 rad/s, the group
velocity is v =4 m/s, and the accumulated phase shift is ¢
= 1. The corresponding fidelity F' of the phase gate is deter-
mined by the bandwidth of the transparency window dw and
the two-photon coherence relaxation rate y,,, as discussed
above. For the present parameters, condition (16) is satisfied,
the optical depth is large x,L~ 1.7 X 10°, while for a cold
atomic gas we have vy,,= v,. Therefore the fidelity is mainly
limited by the relaxation rate 7y, of Rydberg states and is
given by F=exp(-7y,L/v)=0.96.

To summarize, we have studied a highly efficient scheme
for cross-phase modulation and entanglement of two coun-
terpropagating single-photon wave packets, employing their
ultrasmall group velocities in atomic vapors, under the con-
ditions of electromagnetically induced transparency, and the
strong long-range dipole—dipole interactions of the accompa-
nying Rydberg-state excitations in a ladder-type field-atom
coupling setup. We have solved, in the weak-field and adia-
batic approximations, the effective one-dimensional propaga-
tion equations for the polariton operators and have shown
that the dipole—dipole interaction leads to a homogeneous
conditional phase shift that can reach the value of 7 even if
the transverse cross section of the pulses w? is much (three
orders of magnitude) larger than the diffraction limit \>. This
is the obvious merit of the present proposal, as compared to
previous schemes based on local interactions of photons or
slow-light polaritons [9-15], which require the photonic
beam cross section to be comparable to the cross section for
atomic resonant absorption. Hence our proposal paves the
way to the coveted deterministic entanglement of two single-
photon pulses and the realization of the universal photonic
phase gate [12].
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VI. THIRRING-LIKE SOLITONS IN EIT

We theoretically show that the giant Kerr nonlinearity in the regime of electromagneti-
cally induced transparency (EIT) in vapor may cause the formation of hitherto unobserved
1D and 2D spatial Thirring-like vector solitons, wherein the nonlinear terms are solely due

to the cross-phase modulation that couples two parallel light beams.

A. Introduction to optical spatial solitons

Optical beams, having narrow transverse profile, can self-trap themselves via the interac-
tion with the nonlinear homogenous media whenever the natural diffraction-broadening of
such a beam is balanced by a nonlinear self-focusing mechanism. Such a self-trapped beam
is called an optical spatial soliton with solely self phase modulation (SPM) [52, 63]. The op-
tical beam modifies the refractive index in such a way that it generates an effective positive
lens, i.e. the refractive index in the center of the beam becomes larger than at the beam’s
margins. Hence, the phase velocity in the center of the beam is reduced, thus preventing
the natural evolution of the wavefront from planar to quadratic. Effectively, the medium
is a graded-index waveguide in the vicinity of the optical beam. Provided that the optical
beam that induces the waveguide is at the same time a guided mode of that waveguide, the
beam propagation becomes stationary. If, in addition, the propagation is stable under noise,
then, the beam is a spatial soliton as the stationary propagation can be physically realized.
This perspective is known as the self-consistency principle [64]. One can actually use it to
find (numerically) the wave-functions and propagation constants of solitons in NL media
which do not yield analytic solutions [65]. The mechanisms underlying the large majority
of solitons belong to this type. These include solitons in atomic vapor [66], Optical Kerr
media [67-69], photorefractives [70], and many others [52, 63]. In Particular, self-trapped
soliton in EIT media was first suggested by Hong et al [71]. In their theoretical proposal,

the beam is subject solely to self phase modulation in a gas of N-type level atoms.
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1. Vector and composite solitons

A beam consisting of two (or more) field components that mutually self-trap in a nonlinear
medium is called a vector solitons. The field components jointly induce a waveguide and
trap themselves within it by properly populating its guided modes. Vector solitons, first
suggested by Manakov [72], consist of two orthogonally polarized components in a nonlinear
Kerr medium where the self-phase modulation (SPM) and cross-phase modulation (XPM)
equally contribute to the potentail, that is, each field "feels” its own induced potential
(SPM) as well as the other component’s induced potential (XPM). As a consequence of
the self consistency principle, stationary propagation of a vector soliton is achieved if the
field components correspond to guided modes of the waveguide induced by the sum of their
intensities. In the degenerate case (Manakov-type solitons), all fields components populate
the same mode (typically the fundamental mode) of the waveguide [72, 73]. However, vector
solitons can also form when the fields components populate different modes of their jointly
induced waveguide, as was predicted in the temporal [74] and spatial [75] domains, and

observed in photorefractives [76]. Such solitons are called composite or multi-mode solitons.

2. Dark solitons

Dark soliton [77] is the self-trapping of a void of light, which resides inside a uniform
background illumination. A narrow dark notch (stripe) borne on an otherwise-uniform light
beam that propagates in the center of a linear medium diffracts. However, when the notched
beam propagates in a self-defocusing medium, as a result of the illumination the refractive
index decreases in the illuminated region (on both side of the notch), whereas at the center
of the notch the index remains unchanged. Due to the fact that the index at the center is
now higher than in the illuminated regions, the two portions of the beam (on both side of the
notch) expand their inner boundaries and reduce the diffraction of the notch. Under certain
conditions, the diffraction of the notch is fully eliminated and the dark notch experiences
stationary (non-diffracting) propagation as a dark soliton. ”Fundamental” (not higher order)
dark solitons must possess an anti-symmetric waveform, i.e., their amplitude must undergo
a phase jump in the center of the notch. The self-consistent view of a dark soliton is that a

dark soliton is the second guided mode at cut-off of the induced waveguide.
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Coherence between two levels that is induced by a
strong (drive) laser field can give rise to absorption
cancellation on another transition in a A-shaped
atomic level configuration for a weak probe field. Ab-
sorption cancellation occurs via destructive interfer-
ence with the drive field. This phenomenon, known
as electromagnetically induced transparency (EIT1 o)
changes the probe-field dispersion, making its group
velocity dependent on the drive field, so that by turn-
ing the drive field off one can slow a probe pulse down
to a complete standstill.? Slow-light manifestations of
EIT have attracted considerable attention, in view of
their possible use for storing and regeneratlng quan-
tum states of light in atomic quantum networks.* An-
other nonlinear manifestation of EIT is spatial soli-
tons, which were predicted to form when diffraction
is balanced by self-phase modulation® (SPM).
Whereas the foregoing aspects of EIT pertain to a
single probe beam, giantly enhanced Kerr nonhnear
coupling of two probe beams is not less promising.®
Its highlight is the dramatically enhanced phase
shift (compared with similar shifts in other Kerr me-
dia), impressed by one ultraweak probe on another
(cross-phase modulation, XPM) in the N-shaped
atomic level configuration detailed below. This effect
may bring about the deterministic entanglement of
two single-photon pulses.®

Despite the extensive discussion of the giant XPM
in EIT media and its recent experimental
demonstration,'® its analysis has been restricted
mainly to one dimensional (1D) propagation without
considering transverse (diffraction) effects of the
cross-coupled beams. Here we study unexplored as-
pects of the giantly enhanced XPM between two
beams subject to EIT: the formation of low-power
spatial solitons that arise solely from the balance be-
tween diffraction and XPM with no contribution from
SPM.

This kind of soliton generically conforms to the
massive Thirring model.’*™*® In optics, Thirring-type
(holographic) solitons were predicted to occur with
the XPM arising from the grating induced by two mu-
tually coherent fields,'*1? having no SPM contribu-
tion. However, even though evidence for holographic

0146-9592/05/243374-3/$15.00

focusing was 1"epor‘ced,16’17 optical Thirring-type soli-
tons have thus far never been observed. This is be-
cause it is very difficult to find optical systems with
large XPM but lacking SPM altogether. The system
proposed in this Letter offers just that and thus sup-
ports the formation of such “exotic” optical Thirring-
type solitons.

Consider a cold atomic medium containing two spe-
cies of atoms, A with a A-shaped level configuration
and B with an N-shaped level configuration (Fig. 1).
All the atoms are optically pumped to the ground
states |b)4 p. Atoms A and B resonantly interact with
two running-wave fields driving the atomic transi-
tions [c)a p—|a)a p with the Rabi frequencies B
respectlvely In the absence of level |d)g, this s1tua-
tion corresponds to the usual EIT for the fields 51 2
that are acting on the transitions [b)4 p— |a)a p: in
the vicinity of a frequency corresponding to the two-
photon Raman resonances |b)4 p— [c)a p, the medlum
becomes transparent for both weak fields. 218 This
transparency is accompanied by a steep variation of
the refractive index. The field &; dispersively inter-
acts with atoms B via the transition |c)p— |d)p with
the detuning A= w(B - ;. As a result, atoms of species
B simultaneously pr0v1de EIT for the field &, and 1ts
cross coupling with the field 6’1, known as XPM.°
Note that the role of atoms A in Fig. 1 is only to pro-
vide EIT for the field &;. This is necessary to match

Atoms B

Atoms A

pl
/

@ /
'/

Fig. 1. Atomic level scheme involving two species of atoms
A and B, both subject to EIT conditions. The fields &;, &
interact via Kerr-nonlinear XPM. For the case in which & 4
are cw fields, atoms A and QE;A) can be ignored, as they are
unnecessary.

© 2005 Optical Society of America
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Fig. 2. Fundamental-mode Thirring-type solitons. (a)—(c)
Soliton profiles for different ratios between the peak ampli-
tudes. (d) Soliton existence curve: FWHM of each field ver-
sus the peak amplitude &,(0) at a fixed peak amplitude
£1(0)=1. Points a—c correspond to the solitons of (a)-(c),
respectively.

the group velocities of the two copropagating weak
pulses and thus maximize their interaction time.”” In
what follows we limit ourselves to continuous-wave
(cw) fields, so that EIT conditions for field £; are not
required, i.e., atoms A, as well as the driving field
Qf;\), can be dropped.

Here we study optical beams with narrow trans-
verse profiles, so that diffraction plays a significant
role, as ozgposed to earlier treatments of XPM in
EIT.5%2"%2 Another distinct feature of this problem
is that SPM, caused by the coupling of the field &, to
the transition ¢ —d in atoms B, or its equivalent for
the field &;, is inversely proportional to the detuning
of the field from that transition. Hence, assuming
that the detuning of field &£, is much larger than the
detuning of field £; on the same transition, SPM can
be neglected and only XPM survives. These two fea-
tures are responsible for the ability to form a novel
type of spatial soliton. The system is described by the
following equations for the slowly varying envelopes,
obtained perturbatively under the weak-field adia-
batic approximation,'®! for cw fields and the stan-
dard paraxial conditions (i.e., optical beams much
wider than the wavelength):

d
2ik1£E1+V2¢E1=—k%ﬂ|E2\2E1, (1a)

J
2iky B + ViEy=-k3n|E|’E,, (1b)

where 7=u 221525,/ (A|QP|2€)?), pp is the density
of atoms B, ,u,fﬁ) and ,ufg)) are the c—d and a — b tran-
sition dipoles, and k; 5 are the wave vectors of the
fields E; 5, respectively.

In deriving the above equations we have made the
experimentally realistic assumption that absorption
of both weak fields is negligible over the propagation
length.%*?° Rewriting these equations in dimension-
less form yields

where a=k,/k, is the asymmetry parameter, V'2
=208+ P13s% E=kx; s=kyy; (=(k1/2)z; and &;
= V’WEi. The sign of the detuning A (appearing inside
the constant %) is crucial, as it determines the sign of
the nonlinearity: o=+1 for positive (red) detuning
(focusing) and o=-1 for negative (blue) detuning (de-
focusing).

It is important to emphasize the basic difference
between Thirring-type solitons and Manakov-like
vector solitons.”® The nonlinearity in Manakov-like
systems depends on the sum of the intensities of the
individual components; that is, SPM and XPM play a
symmetric role. Consequently, the constituents of the
Manakov-like solitons are bound states of the poten-
tial they jointly induce. For Thirring-type solitons, on
the other hand, each component feels, and is guided
by, a different potential: £; feels the potential induced
by &, and vice versa. Note also that a must be differ-

1

Soliton amplitude
o

Fig. 3. (a) Composite Thirring-type soliton solutions with
beam &; in the fundamental (ground-state) mode and beam
&y in the dipole (first asymmetric) mode. The amplitude ra-
tio is 1 (equal intensities). (b) Same as (a) for amplitude ra-
tio 2. (c) Propagation of the solution shown in (a): beam &;
(upper) and beam &, (lower) without (left) the nonlinearity
for one diffraction length and with (right) the nonlinearity
for ~10 diffraction lengths. During nonlinear propagation
the composite entity splits into two fundamental Thirring-
type solitons diverging away from one another. (d) Propa-
gation of the solution shown in (b) in the presence of initial
noise. Both components fuse into a single fundamental
Thirring-type soliton.
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ent from 1: i.e., the fields &; and &,, operating on dif-
ferent transitions, must have different wavelengths.
If a=1 the SPM term cannot be neglected, and Eqgs.
(1) are no longer adequate.

The soliton solutions of Eqs. (2) have been found
numerically through the self-consistency method and
their propagation has been simulated by using the
split-step Fourier propagation method. The asymme-
try parameter a has been chosen to take the experi-
mentally reasonable value of 1.0005 throughout our
calculations. In what follows we discuss the main fea-
tures of solitons thus obtained, referring to solutions
that are bound in one or two transverse directions as
1D and 2D, respectively.

We first discuss the o= +1 (focusing) case. We have
studied various amplitude ratios of fields £; and &, in
the presence of noise to find that the fundamental
(ground-state mode) mode of the 1D system (V'?
=/ 9€?) is stable. Figures 2(a)-2(c) present such fun-
damental Thirring-type solitons with different ampli-
tude ratios. Figure 2(d) shows the existence curve
versus the peak amplitude of the second component,
E5(0), when £;(0)=1. Note that the existence curve is
governed only by the ratio between the peak ampli-
tudes. Increasing the peak amplitudes of both compo-
nents by a factor a results in new widths, FWHM,;/«
and FWHM,/ a.

When seeking Thirring solitons in two transverse
dimensions (V%= /3¢ + /%), we find that the 2D
solitons suffer from a weak instability, similar to 2D
Kerr solitons.

Next, we have searched for 1D composite (multi-
mode) Thirring-type solitons for which each field is in
a different mode.** Specifically, we have looked for
solitons in which &; and &, are in the fundamental
and second (dipole-type) modes, respectively, as was
found for holographic solitons® and the Manakov-
like sys‘cem.23 However, our system is not saturable
(unlike the one in Refs. 14 and 25), and we find these
solutions to be unstable. When the amplitude of the
dipole mode is equal to or larger than that of the fun-
damental mode, the composite entity splits into two
fundamental Thirring-type solitons diverging away
from one another [Fig. 3(c)]. The splitting occurs ir-
respective of whether we add initial noise to the ideal
solution. On the other hand, when the fundamental
component is more intense than the dipole compo-
nent, they fuse (within several diffraction lengths,
depending on the noise) into a fundamental-mode
Thirring-type soliton [Fig. 3(d)].

The case of defocusing nonlinearity [o0=-1 in Eq.
(2)] might have been expected to yield dark 1D or 2D
solitons. However, within our model with a#1, we
cannot find such solitons. This is related to the fact
that a dark soliton (for any local nonlinearity) is the
second bound state of the induced potential at cutoff
energy.’® A Thirring-type EIT dark soliton requires
both components to be at the cutoff energy of each

OPTICS LETTERS / Vol. 30, No. 24 / December 15, 2005

other’s induced potential. This requirement prohibits
the existence of a dark Thirring soliton unless a=1.
Yet, as discussed above, the case a=1 does not repre-
sent our EIT system anymore.

To conclude, we have shown that the giant Kerr
nonlinearity in the regime of EIT in vapor can lead to
the formation of spatial Thirring-like vector solitons,
supported solely by cross-phase modulation.

This work was supported by the Israeli Science
Foundation through the Center of Excellence on Co-
herent Matter Wave Optics.
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VII. SUMMARY AND CENTRAL CONCLUSIONS

We have studied a novel regime of giant Kerr-nonlinear interaction between two ultra-
weak optical fields in which the XPM is not accompanied by spectral broadening of the
interacting pulses. This regime is realizable in atomic vapors, when a weak probe pulse,
upon propagating through the electromagnetically induced transparency (EIT) medium, in-
teracts with a signal pulse that is dynamically trapped in a photonic band gap created by
spatially-periodic modulation of its EIT resonance. This scheme avoids the difficulty posed
by copropagating pulses: since the conditional phase-shift of each pulse is proportional to
the local intensity of the other pulse, different parts of the interacting pulses acquire differ-
ent phase shifts, which causes their frequency chirp and spectral broadening. The foregoing
difficulties may be overcome via controlled modification of the photonic density of states in
gaseous EIT media, by modulating their refractive index with an off-resonant standing light
wave [48]. By properly tuning the resulting photonic band structure, a propagating signal
pulse can be converted into a standing-wave polaritonic excitation inside the photonic band
gap (PBG). The trapped signal polariton, having an appreciable photonic component, can
impress a large phase shift that is spatially-uniform (across the pulse) upon the propagating
probe, at the single-photon level. The advantageous features of the present scheme pave the
way for possible QI applications based on deterministic photon-photon entanglement, with-
out the limitations associated with traveling wave configurations [36] and without invoking
cavity QED techniques [19, 21, 22, 62].

Another possible scheme for giantly enhanced XPM with suppressed spectral broadening
between optically-induced dark-state polaritons in spatially periodic media with multilevel
dopants was suggested by us [25]. This mechanism can produce photon-photon entanglement
with high fidelity, by combining the advantages of their dispersion in PBG structures and
of the strongly enhanced nonlinear optical coupling achievable via EIT in an appropriately
doped medium. To this end we have proposed a new class of multimode quantum-field
interactions involving quantized EIT-polaritons in PBG structures. We have shown that
such interactions allow efficient XPM between a propagating probe pulse and a trapped
signal pulse, whose localization is achieved by an adiabatic four-wave mixing process that
pulls its frequency into the PBG. This localization allows multiply repeated interaction of

the signal with the entire probe pulse. As a result, the combined two-photon state of the
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system can acquire a conditional phase-shift, which corresponds to the universal cphase
logic gate. The phase shift is spatially-uniform and the process may have high fidelity. The
proposed schemes may therefore pave the way to quantum information applications, such as
deterministic all-optical quantum computation, dense coding and teleportation [28].

In the foregoing schemes [24, 25] a rather strong transverse confinement of the pulses close
to the minimum of A\? is needed in order to attain a phase shift of 7 , which is technically
challenging. We have therefore considered a different approach [26], which involves induced
dipole-dipole interactions in the EIT medium, and leads to a conditional phase shift of
between two single-photon pulses subject to moderate transverse confinement. Instead of
resorting to the rather weak short-range collisional interactions, as in [59], we have made use
of long-range dipole-dipole interactions between atoms in an internal state which is populated
only in the presence of a polariton. If these internal states are Rydberg states, their induced
dipole moments in dc fields are large and their interaction can be rather strong. The nonlocal
character of the interaction further enhances the effective interaction time. In [26]we have
discussed a novel scheme for a strong cross-phase modulation of two counterpropagating
single-photon wavepackets, making use of their ultra-small group velocities in atomic vapors,
under EIT conditions of, and of their long-range dipole-dipole interactions. We have shown
that the dipole-dipole interaction leads to a homogeneous conditional phase shift. The
magnitude of this phase shift can reach the value of 7 even if the transverse cross section of
the pulses is much larger than the diffraction limit A?. This is in contrast to the previous
schemes based on local interactions of photons or slow-light polaritons|24, 25, 34, 36, 46|, in
which the photonic beam cross section has to be comparable to the cross section for atomic
resonant absorption. Thus the present scheme could be used to deterministically entangle
two single-photon pulses or realize the controlled-phase universal logic gate [24, 25] under
practical conditions.

A more classical venue that has emerged in the course of the research, is concerned with
vector solitons formed by two optical beams via XPM within the EIT media. Despite the
extensive discussion of the giant XPM in EIT media, and its recent experimental demon-
stration [38], its analysis has been mainly restricted to one dimensional (1D) propagation,
without considering transverse (diffraction) effects of the cross-coupled beams. We have
shown [78] that the giant Kerr nonlinearity in the EIT regime in vapor can give rise to

the formation of Thirring-type spatial solitons, by two co-propagating light beams. They
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represent an unexplored aspect of the giantly-enhanced XPM between two beams subject

to EIT: the formation of low-power spatial solitons that arise from the balance between

transverse diffraction and XPM, with no contribution from self-phase modulation (SPM).

This is, to our knowledge, the first physical system supporting spatial solitons with solely

XPM interaction (each field "feels” only the potential induced by the other field).
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