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Abstract. We formulate the theory of a micromaser operating simultaneously on a one- and a
two-photon atomic transition. Departing from the complete microscopic Hamiltonian for this
composite ‘atom plus field’ system, we derive the equations governing its behaviour in the
semiclassical approximation and also the fully quantum mechanical master equation. Using
parameters corresponding to existing realizations of the one- and two-photon micromaser, we
obtain illustrative examples of some novel aspects of this system in the steady state as well as in
dynamical evolution.

1. Introduction

A rather serious experimental limitation in realizing a two-photon laser in the optical
wavelength range stems from the difficulty in constructing a cavity possessing the proper
finesse. The requirement is that no cavity mode is near resonance with a single-photon
transition from the upper (pumped) state to an intermediate one lying between the two states
connected by the desired two-photon transition. If that requirement is not satisfied, an atomic
system tuned to a cavity mode on resonance with a two-photon transition will most likely lase
into an adjacent mode near resonance with the single-photon transition. Thus a two-photon
laser may more often than not lase simultaneously into two modes, one pumped through
a single-photon transition and another pumped by the desired two-photon one. We have
addressed this issue in a recent paper [1] where we have developed the theory of this unusual
two-mode laser in which one of the modes is pumped by the two-photon transition.

This has motivated us to study the same problem in the context of the micromaser.
Micromasers pumped by either one- or two-photon transitions have been studied quite
extensively experimentally as well as theoretically [2–6]. This of course is not the place
for a review of the vast literature on these topics which can be found in [7]. The difficulty with
the finesse in the optical wavelength range discussed above does not arise in the two-photon
micromaser because the wavelength allows the design of the appropriate cavity. For the same
reason, one can envision designing a cavity which does have a second mode near resonance
with the single-photon transition to an intermediate Rydberg state. It may even be possible to
tune such a resonance. A further degree of flexibility in adjusting the detuning comes from
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the possibility of choosing slightly different Rydberg states. In other words, one can tune both
the cavity as well as the atomic system. That is the problem we have studied in this paper; a
micromaser pumped by two- and one-photon atomic transitions at the same time. Given recent
progress in microcavities, one may also envision the implementation of such a system even in
the context of the microlaser [8]. It is not a (micro)maser (laser) operating in two modes, but
rather a (micro)maser (laser) operating in two modes one of which is inherently nonlinear.

The theory of a two- or multi-mode laser is of course a mature topic but the issue here is
different in a rather fundamentally significant way. In the standard two-mode single-photon
laser, the two competing modes feed on the same gain curve but each of them alone and well
below threshold represents a linear process. In the present context, one of the modes exhibits a
nonlinear dependence on the respective field down to zero intensity. Moreover, the two modes
now feed on two different gain curves. As for the micromaser case, the issue has never been
considered as it can be avoided, while for the laser, it is most often an inconvenient fact of
reality. Our purpose then is to explore, in a controlled setting, the fundamental features of the
resulting phenomena.

This paper is organized as follows. In section 2 we derive the effective Hamiltonian of the
system, which is then used in section 3 for the analysis of the interaction of a single atom with
the pure state of the cavity field. The more general master equation approach is discussed in
section 4, and the formalism developed there is applied to the exploration of the semiclassical
behaviour of the system in section 5, as well as its quantum-mechanical evolution in section 6.
The paper is closes with the conclusions outlined in section 7.

2. Derivation of the effective Hamiltonian

The atom with the level configuration depicted in figure 1, where unperturbed atomic levels
|e〉, |i〉 and |g〉 have energies ¯hωe, h̄ωi and h̄ωg, respectively, interacts with two modes of
the cavity radiation field with well separated frequenciesωa andωb. These frequencies are
detuned from the atomic resonances by the detunings

1a = (ωi − ωg)− ωa 1b = (ωe − ωi)− ωb (1a,1b � ωa, ωb) (2.1)

Figure 1. Schematic representation of the atomic system.
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and for simplicity we assume that modea is in perfect two-photon resonance with the atomic
transition|e〉 → |g〉, so that(ωe − ωi)− ωa = −1a.

We begin with the complete microscopic Hamiltonian of the combined system ‘atom plus
cavity field’, which, in the electric dipole and rotating-wave approximations, can be written as

H = HA +HF +Hint (2.2)

whereHA,HF andHint are, respectively, the atom, field and interaction terms:

HA = h̄ωe|e〉〈e| + h̄ωi |i〉〈i| + h̄ωg|g〉〈g| (2.3)

HF = h̄ωa
(
a†a + 1

2

)
+ h̄ωb

(
b†b + 1

2

)
(2.4)

Hint = h̄k(a)ei (a|e〉〈i| + a†|i〉〈e|) + h̄k(b)ei (b|e〉〈i| + b†|i〉〈e|)
+h̄k(a)ig (a|i〉〈g| + a†|g〉〈i|) + h̄k(b)ig (b|i〉〈g| + b†|g〉〈i|). (2.5)

In these equations, the field modesa andb are described, respectively, by the creation and
annihilation operatorsa†, a andb†, b. The quantityk(a)ei is, for instance, the coupling strength
of modea with the atomic transition|e〉 → |i〉, etc:

k
(a,b)
ei = −〈e|D|i〉Ea,b

h̄
(2.6)

k
(a,b)
ig = −〈i|D|g〉Ea,b

h̄
(2.7)

where 〈e|D|i〉 and 〈i|D|g〉 are the matrix elements of the electric dipole operatorD,
Ea,b = (h̄ωa,b/2ε0V )

1/2 is the field per photon for the corresponding mode, andV is the
cavity volume. Taking into account the fact thatωa − ωb = 1a +1b � ωa,b, we can neglect
the difference betweenEa andEb and drop the superscript in the coupling constantsk. This
simplification has practically no impact on the generality of the discussion and results which
can be easily adapted to the case of two different coupling constantsk(a), k(b), if that were
necessary. Consistently with our model (figure 1), we assume that|1a| � |1b|, kei, kig
throughout this paper.

In the number state representation for both modes of the cavity field, the Hamiltonian
(2.2) has non-vanishing matrix elements only between the following six states of the combined
atom + field system:|e, na, nb〉, |i, na + 1, nb〉, |i, na, nb + 1〉, |g, na + 2, nb〉, |g, na + 1, nb + 1〉
and|g, na, nb +2〉, where the first element in the kets represents the state of the atom, while the
second and the third elements indicate the state of the modea andb, respectively, containing
the corresponding number of photons. We assume that a single atom initially prepared in the
excited level|e〉 enters the cavity whose two modes under consideration, prior to the interaction
with the atom, are in the pure number states|na〉 and|nb〉, respectively. Thus, the initial state
of the system is|ψ(0)〉 = |e, na, nb〉. For the moment, we assume that both cavity modes
are not dumped (later on in the derivation of the master equation of the field we discuss the
validity of such an assumption), which allows us to describe the system evolution using the
Schr̈odinger equation

ih̄
d|ψ(t)〉

dt
= H |ψ(t)〉. (2.8)

The state of the system at a subsequent timet will be represented by the linear combination
of the six basis states, with the complex probability amplitudes determined by (2.8).

The differential equations for the complex probability amplitudes of the states|i, na +
1, nb〉, |g, na + 1, nb + 1〉 and|g, na, nb + 2〉 are of the form (in the interaction picture)

i
dy

dt
= 2y +B(t) (2.9)
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where2 is such that|2| � B(t) (in our case2 contains1a). Equation (2.9) can be written
in an integral form as

y(t) = −i
∫ t

0
dt ′ exp[i2(t ′ − t)]B(t ′). (2.10)

For time intervalst sufficiently short, so thatB(t ′) does not change much but the exponent in
(2.10) experiences many oscillations overt ′ ∈ [0 : t ], we can integrate this equation making
the slowly varying envelope approximation forB(t) and, after performing the time averaging,
we obtain〈y(t)〉 = B(t)/2.

Following the above procedure we obtain a set of algebraic equations for the complex
probability amplitudes of the states|i, na + 1, nb〉, |g, na + 1, nb + 1〉 and |g, na, nb + 2〉.
Expressing these amplitudes through the probability amplitudesA1,A2 andA3 of the remaining
three states|e, na, nb〉, |i, na, nb + 1〉 and|g, na + 2, nb〉, respectively, we substitute them into
the equations forA1, A2 andA3 found from (2.8). The result is

i
dA1

dt
= −k

2
ei(na + 1)

1a

A1 +

(
kei
√
nb + 1− keik

2
ig

√
(na + 1)2(nb + 1)

1a(1a +1b)

)
A2

−keikig
√
(na + 1)(na + 2)

1a

A3 (2.11)

i
dA2

dt
=
(
kei
√
nb + 1− keik

2
ig

√
(na + 1)2(nb + 1)

1a(1a +1b)

)
A1

+

(
−1b +

k2
ig(nb + 2)

2(1a +1b)
+
k2
ig(na + 1)

1a +1b

)
A2 −

k3
ig

√
(na + 1)(na + 2)(nb + 1)

1a(1a +1b)
A3

(2.12)

i
dA3

dt
= −keikig

√
(na + 1)(na + 2)

1a

A1−
k3
ig

√
(na + 1)(na + 2)(nb + 1)

1a(1a +1b)
A2 −

k2
ig(na + 2)

1a

A3

(2.13)

where we have dropped the termk2
ig(nb+1)/(1a+1b) in the non-resonant denominators, since

it is negligible in comparison with1a. Now consider the physical meaning of the various terms
of the above equations: first of all, we note that the terms proportional tok3/1a(1a +1b) are
responsible for certain three-photon couplings between the atomic levels. Their contribution
can be neglected in comparison with the first- (�b) and the second- (�a) order couplings

�a(na) = −keikig
√
(na + 1)(na + 2)

1a

(2.14)

�b(nb) = kei
√
nb + 1 (2.15)

since the number of photonsna, nb is not expected, in this context, to be so large as to violate
the hierarchy of the orders of perturbation theory. This we have also checked quantitatively
in detail using parameters typical for the two-photon micromaser experiments (listed later in
section 5). As long asna andnb are not larger than 100, these terms can be safely neglected.
The termsk2

ei(na + 1)/1a in (2.11),k2
ig(nb + 2)/2(1a +1b) + k2

ig(na + 1)/(1a +1b) in (2.12)
andk2

ei(na + 2)/1a in (2.13) represent the shift of the corresponding level; then-dependent
part of each term gives the Stark shift of the atomic level, whereas the remaining constant is
part of the vacuum shift, which must be assumed to be incorporated into the energy of the
atomic level. Under the conditionkei = kig ≡ k, the differential Stark shift of the atomic
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levels|e〉 and|g〉 vanishes and equations (2.11)–(2.13) can be greatly simplified:

i
dA1

dt
= �b(nb)A2 +�a(na)A3 (2.16)

i
dA2

dt
= �b(nb)A1 +1(na, nb)A2 (2.17)

i
dA3

dt
= �a(na)A1 (2.18)

where

1(na, nb) = −1b +
k2(4na + nb)

2(1a +1b)
(2.19)

is the effective detuning of the modeb from the atomic transition|e〉 → |i〉.
Equations (2.16)–(2.18) imply the effective Hamiltonian

Heff = h̄k(b|e〉〈i| + b†|i〉〈e|) + h̄µ(a2|e〉〈g| + a†2|g〉〈e|) (2.20)

combined with the fact that the detuning1(na, nb) is a function of the number of photons in
both modes,a andb, of the cavity field. (In equation (2.20) the parameterµ = −k2/1a is the
coupling strength of the two-photon process.) Thus, the problem is reduced to the three-level
system, and the state vector|ψ(t)〉 can be expanded at anyt > 0 as

|ψ(t)〉 = A1(t) |e, na, nb〉 +A2(t) |i, na, nb + 1〉 +A3(t) |g, na + 2, nb〉 (2.21)

with the initial conditionsA1(0) = 1,A2(0) = A3(0) = 0.

3. The energy exchange between atom and field

To find the complex probability amplitudesAj(t) (j = 1, 2, 3), we take the Laplace transform
of the equations of motion (2.16)–(2.18). The resulting system of algebraic equations can be
solved exactly, but for an arbitrary value of1(na, nb) the procedure involves solving a cubic.
In the special case of1(na, nb) = 0, this cubic factorizes and the inverse Laplace transform
gives

A1(t) = cos
(√
�2
a +�2

b t
)

(3.1)

A2(t) = −i
�b√
�2
a +�2

b

sin
(√
�2
a +�2

b t
)

(3.2)

A3(t) = −i
�a√
�2
a +�2

b

sin
(√
�2
a +�2

b t
)
. (3.3)

This shows that the population|A1(t)|2 of the atomic level|e〉 experiences Rabi oscillations

with the frequency
√
�2
a +�2

b. Thus, there is a periodic exchange of energy between the atom

and both cavity modes. The quantity|A2(t)|2 represents the probability of adding one photon
into modeb which containednb photons att = 0. Similarly, |A3(t)|2 gives the probability
for modea to gain two photons, since each transition|e〉 → |g〉 leads to the emission of two
photons. In figure 2 we plot the time dependence of the probabilities|A2(t)|2 and|A3(t)|2 for
the case when the cavity contains initiallyna = 10 andnb = 10 photons, using the analytical
expressions (3.2) and (3.3). For comparison we plot in the same graph the probabilities
|A2(t)|2 and|A3(t)|2 obtained from the numerical solution of equations (2.16)–(2.18) for the



4410 D Petrosyan and P Lambropoulos

Figure 2. Time dependence of the probabilities|A2|2 and|A3|2 in the case wherena = nb = 10,
obtained from the analytical expressions (3.2), (3.3) (full curves), and from the numerical solution
of (2.16)–(2.18) when1b = 0 (broken curves). The time is measured in units ofk−1,1a = 100k.

same photon numbers and1b = 0. First of all, we note that the numerical solution in this case
coincides almost completely with the analytical one, which is obtained under the assumption
1(na, nb) = 0. This fact is easily understood from equations (2.14), (2.15) and (2.19) which
show that for1b = 0 and not very large number of photonsna,b, the one-photon effective
detuning1(na, nb)becomes negligible in comparison with the Rabi frequency of this transition
�b(nb). Therefore, dropping the second term in (2.19) and applying for the probabilities|Aj |2
equations (3.2) and (3.3) involves a very small error, and in this special case we can analyse
the behaviour of the system through the analytical expressions for|Aj |2.

In the absence of the detuning1b, the probabilities|A2|2 and|A3|2 are proportional to the
Lorentzians in front of the sines in (3.2) and (3.3), respectively, and are, therefore, determined
by the Rabi frequency�j of the corresponding transition. Hence, for the case of an equal
number of photons in both modes,a andb, we find that the initially excited atom exchanges
energy basically with the modeb only, which is coupled to the one-photon transition. The
situation does not change much with the increase of the photon number in modea, until the
reasonable amountna 6 100, since even in that case, the two-photon Rabi frequency still
remains much smaller than the single-photon one.

To increase the two-photon transition amplitude we choose the detuning of the competing
single-photon process to be appropriately large1b = 15k (figure 3). In figure 3(a) we see
that the amplitude of the one-photon oscillations|A2|2 is reduced significantly, whereas the
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Figure 3. Time dependence of the probabilities|A2|2 (full curve) and|A3|2 (broken curve) in the
case1b = 15k, na = nb = 10 (a), andna = 20, nb = 10 (b), obtained from the numerical
solution of (2.16)–(2.18). Other parameters as in figure 2.

probability of the two-photon transition|A3|2 now oscillates with a much lower frequency
but with a highly enhanced amplitude, although remaining smaller (by a factor of two) than
the single-photon one. When we setna = 20 (butnb = 10 still) we find that the amplitude
of |A3(t)|2 is increased dramatically (figure 3(b)), which is due to the quadratic dependence
of the two-photon transition on the field’s intensity (or the photon number). On the other
hand, the maximal magnitude of the one-photon oscillations amplitude is almost unchanged,
although we see some amplitude modulation of the probability|A2|2 with the oscillations of
|A3|2 (this effect becomes more pronounced for the larger values ofna > 100). This illustrates
the fact that the one-photon transition—linear in the field intensity—is rather insensitive to
the existence of the competing two-photon process, except for the modulation effect, which
is rather weak whenna, nb < 100. In contrast, the numerical simulations show that the two-
photon transition amplitude depends strongly on the number of photons in the competing mode,
which suppresses significantly the two-photon oscillations with the increase of its intensity.

Consider finally the case of a very large detuning1b, so that for a given definite number
of photonsna andnb the condition�b(nb) � 1(na, nb) is satisfied. This allows us to apply
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to equation (2.17) the same procedure as for equation (2.9), obtaining

A2 = �b(nb)A1

1(na, nb)
' A1

�b(nb)

1b

� 1. (3.4)

Then the solution for the remaining two complex probability amplitudesA1 andA3 is found
from equations (2.16) and (2.18) to be

A1(t) = cos(�at) (3.5)

A3(t) = −i sin(�at) (3.6)

which describes the ordinary two-photon Rabi oscillations between the levels|e〉 and |g〉,
practically unaffected by the presence of the competing modeb.

4. The master equation

In this section, we derive the general master equations for both modes of the cavity field. For
this purpose, we adopt the standard micromaser assumptions [3, 4]; namely, a monoenergetic
beam of excited atoms crosses the two-mode cavity at a flux low enough that, at most, one
atom at a time is present inside the resonator. Letti be the arrival time of theith atom and
tint the time spend by the atom inside the cavity. Then the assumption above implies that
tint 6 ti+1 − ti , which allows us to neglect the atom–atom interaction inside the cavity and
consider the contribution of each atom independently. We also suppose that the cavity damping
rateγa,b on both frequenciesωa andωb is small enough in order for the excited atoms to be
able to build up the field with large number of photons:γ−1

a,b � ti+1− ti . Combined with the
previous inequality, this givestint � γ−1

a,b and the field’s relaxation process can be neglected
during the time of interactiontint with the single atom. With these approximations, we can
adopt the standard procedure in micromaser theory [9, 10] for the derivation of the master
equation of our system.

Consider first the single-atom incremental contribution to the state of the cavity field.
Prior to interaction with the atom, att = 0, the initial state of each mode of the cavity field
can be represented quite generally as

ρ(j)(0) =
∑
nj ,mj

ρ(j)nj ,mj (0)|nj 〉〈mj | j = a, b. (4.1)

The state of the atom at this moment of time is

ρ(at)(0) = |e〉〈e| (4.2)

and the total density operator of the atom + field system is just a tensor product of (4.1) and
(4.2):

ρ(0) = ρ(at)(0)⊗ ρ(a)(0)⊗ ρ(b)(0)
=

∑
na,ma;nb,mb

ρ(a)na,ma (0)ρ
(b)
nb,mb

(0)|e, na, nb〉〈e,ma,mb| (4.3)

where|e, na, nb〉 ≡ |e〉 ⊗ |na〉 ⊗ |nb〉.
After the interaction, att = tint, the system evolves to the state

ρ(tint) =
∑

na,ma;nb,mb
ρ(a)na,ma (0) ρ

(b)
nb,mb

(0) |ψna,nb (tint)〉〈ψma,mb (tint)| (4.4)
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where|ψna,nb (t)〉 is given by equation (2.21). The state of each mode of the field at this moment
of time is described by the reduced density operator

ρ(a)(tint) = Trb[Trat [ρ(tint)]] ≡ Pa(tint)ρ
(a)(0) (4.5)

ρ(b)(tint) = Tra[Trat [ρ(tint)]] ≡ Pb(tint)ρ
(b)(0). (4.6)

The pump operatorPj (tint) of modej contains the change of the density operatorρ(j) of the
corresponding mode due to the interaction with one single atom. Thus, ifr atoms have passed
through the cavity during timet , the density operator of each mode of the cavity is given by

ρ(j)(t) = [Pj ]
rρ(j)(0). (4.7)

Equation (4.7) describes a so-called regularly pumped micromaser in the absence of decay of
the cavity field. More generally, however, in the time interval between the entrance of two
successive atoms in the cavity, both cavity modes decay with the corresponding ratesγa,b
towards thermal equilibrium with mean numbers of thermal photonsNa,b present in the cavity
due to its coupling to the environment having a finite temperature. This process is described
by the standard [9, 10] master equation

d

dt
ρ(a) = Lρ(a) = 1

2γa(Na + 1)(2aρ(a)a†− a†aρ(a) − ρ(a)a†a)

+1
2γaNa(2a

†ρ(a)a − aa†ρ(a) − ρ(a)aa†) (4.8)

and the analogous equation forρ(b), with the replacementa ↔ b. Moreover, if the time interval
ti+1 − ti between the two subsequent atoms fluctuates, equation (4.7) becomes inapplicable.
Let the arrival times of the incoming atoms obey a Poisson distribution, which implies that
the probability for an excited atom to enter the cavity betweent and t + δt is R δt , where
R = 〈(ti+1− ti)−1〉 is the average injection rate. Then, each mode of the field at timet + δt is
made up of a mixture of states corresponding to atomic excitation and no atomic excitation:

ρ(j)(t + δt) = R δtPjρ(j)(t) + (1− R δt)ρ(j)(t) (4.9)

which yields, in the limitδt → 0,

d

dt
ρ(j) = R[Pjρ

(j)(t)− ρ(j)(t)]. (4.10)

Also including the relaxation process, we obtain, finally, the master equations governing the
time evolution of both cavity modes:

d

dt
ρ(j) = Lρ(j)(t) +R[Pjρ

(j)(t)− ρ(j)(t)] j = a, b (4.11)

with Lρ(j)(t) given by equation (4.8). With the help of equations (4.5), (4.6) and (4.4), in the
number state representation of the field, the master equations (4.11), in component form, can
be written as

d

dt
ρ(a)na,ma = −Rρ(a)na,ma

[
1−

∑
nb

ρ(b)nb,nb

∑
z=1,2

Az(na, nb, tint) A
∗
z(ma, nb, tint)

]
+Rρ(a)na−2,ma−2

∑
nb

ρ(b)nb,nbA3(na − 2, nb, tint) A
∗
3(ma − 2, nb, tint)

− 1
2γa[na +ma + 2Na(na +ma + 1)] ρ(a)na,ma

+γa(Na + 1)
√
(na + 1)(ma + 1) ρ(a)na+1,ma+1 + γaNa

√
nama ρ

(a)
na−1,ma−1 (4.12)
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for modea, and

d

dt
ρ(b)nb,mb = −Rρ(b)nb,mb

[
1−

∑
na

ρ(a)na,na

∑
z=1,3

Az(na, nb, tint)A
∗
z(na,mb, tint)

]
+Rρ(b)nb−1,mb−1

∑
na

ρ(a)na,naA2(na, nb − 1, tint) A
∗
2(na,mb − 1, tint)

− 1
2γb[nb +mb + 2Nb(nb +mb + 1)] ρ(b)nb,mb

+γb(Nb + 1)
√
(nb + 1)(mb + 1) ρ(b)nb+1,mb+1 + γbNb

√
nbmb ρ

(b)
nb−1,mb−1 (4.13)

for modeb.
These equations imply that the interaction timetint is fixed, i.e. all atoms pass through

the cavity with the same speed. The generalization to the case when there is a distribution of
atomic velocities is straightforward [4], but for the sake of simplicity, from now on we assume
thattint = constant.

Equations (4.12) and (4.13) are the central equations of this paper. They are similar to those
one obtains for the ordinary one- and two-photon micromasers and lasers with one important
new aspect: each of these equations includes the averaging over the state of the other mode.

In the following section, from equations (4.12) and (4.13) we will obtain the semiclassical
evolution of the system, as well as analyse the dynamics of the photon number distribution in
section 6.

5. The semiclassical evolution

Denoting byp(a)na ≡ ρ(a)na,na andp(b)nb ≡ ρ(b)nb,nb the diagonal elements of the density operator of
the corresponding mode of the field, from equations (4.12) and (4.13) we obtain

dp(a)na
dt
= −Rp(a)na

∑
nb

p(b)nb |A3(na, nb)|2 +Rp(a)na−2

∑
nb

p(b)nb |A3(na − 2, nb)|2

−γa[na +Na(2na + 1)]p(a)na + γa(Na + 1)(na + 1)p(a)na+1 + γaNanap
(a)
na−1 (5.1)

dp(b)nb
dt
= −Rp(b)nb

∑
na

p(a)na |A2(na, nb)|2 +Rp(b)nb−1

∑
na

p(a)na |A2(na, nb − 1)|2

−γb[nb +Nb(2nb + 1)]p(b)nb + γb(Nb + 1)(nb + 1)p(b)nb+1 + γbNbnbp
(b)
nb−1 (5.2)

where the explicit dependence of the probabilities|Aj |2 on tint has been omitted, because, as
mentioned above,tint is fixed.

The mean value of any physical quantityf (n), which is the function of the photon
numbern, is given by〈f (n)〉 =∑n pnf (n). The semiclassical approximation is obtained by
assuming that the photon number distribution is highly peaked around some largen, so that
〈f (n)〉 ' f (〈n〉).

Multiplying both sides of (5.1) and (5.2) byna andnb, respectively, and summing overna
andnb, we obtain, in the semiclassical approximation, the equations of motion for the mean
photon numbers in both modesa andb:

dn̄a
dt
=
∑
na

naṗ
(a)
na
= 2R|A3(n̄a, n̄b)|2 − γa(n̄a −Na) (5.3)

dn̄b
dt
=
∑
nb

nbṗ
(b)
nb
= R|A2(n̄a, n̄b)|2 − γb(n̄b −Nb). (5.4)
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In these equations the first terms on the right-hand side represent the gain ofn̄a and n̄b due
to the downward transitions|e〉 → |g〉 and|e〉 → |i〉 of the excited atoms, respectively. The
factor of 2 in (5.3) comes from the fact that each transition|e〉 → |g〉 causes the emission of
two photons. The second terms in equations (5.3) and (5.4) are responsible for the relaxation
of n̄a and n̄b to the mean thermal photon numbersNa andNb inside the cavity. If, ideally,
every atom leaves the cavity in level|i〉, from equation (5.4) we find that the steady-state value
for the photon number in modeb would ben̄b = R/γb (providingNb = 0). Similarly, from
equation (5.3), in the steady state, for the maximal possible number of photons in modea we
obtainn̄a = 2R/γa (Na = 0).

The reader who is familiar with the theory of the homogeneously broadened two-mode
laser (see, for example, [10], chapter 6) will notice a difference between the differential
equations governing the intensities in that case and our equations (5.3) and (5.4). IfI1 andI2
denote the intensities in the two modes, those equations have the form

İ1 = 2I1(a1− β1I1− θ12I2)− γ1I1 (5.5)

İ2 = 2I2(a2 − β2I2 − θ21I1)− γ2I2 (5.6)

wherea1,2 are the linear gain constants,β1,2 the self-saturation coefficients,θ1,2, θ2,1 the cross-
saturation coefficients andγ1,2 the damping rate of the corresponding mode. These equations
allow the two modes to oscillate independently even ifI1 ' I2 providedθ1,2, θ2,1 < β1, β2. It
appears that our equations (5.3) and (5.4) do not allow for such a case (when�a ' �b) except
for very short times, as can be seen by examining the form ofA2 andA3 in equations (3.2) and

(3.3) for smallt , so that
√
�2
a +�2

b t � 1. This seems to be a rather fundamental difference
between the two systems. Of course one needs to keep in mind that atomic line broadening
does not occur in the micromaser; but it is doubtful that this is the only reason for the above
difference in behaviour.

Before proceeding further, let us examine the relevance of the conditions established at
the beginning of section 4 to real experiments performed for the micromaser [2, 4, 6]. In a
microwave cavity, with the quality factorQ ' 108–109 for both modes of the cavity field, we
have for the damping ratesγa,b ' 102–103 s−1. Choosing a pump rateR � γa,b ensures that
many atoms pass through the cavity during its damping time; letR = 105 atom/s. In order
for the atoms to be sufficiently dilute (tint 6 R−1) we settint = 10−5 s, which is consistent
with the experimental situation when atoms with thermal velocityv ' 102–103 m s−1 cross
a cavity having a transverse dimension of about a few mm. Since the coupling constantk for
Rydberg atoms is ordinarily equal to 105–106 s−1, even for not very large numbers of photons
na, nb 6 102 present in the cavity, atoms undergo many cycles of Rabi oscillations during
the interaction timetint. To be definite, we choose furtherγa,b = 10−2R, tint = 10k−1 and
1a = 100k as before.

Consider first the case of the exact one- and two-photon resonances of modesb anda
with the atomic transitions|e〉 → |i〉 and|e〉 → |g〉, respectively. It was shown in section 3,
in the discussion of figure 2, that in this case during the interaction time with the cavity
field, a single-atom exchanges energy primarily with modeb, so that the amplitude of the
oscillations of|A2|2 is close to 1, whereas the amplitude of the oscillations of|A3|2 is a
few orders of magnitude weaker, which is due to the smallness of the two-photon coupling
constantµ in comparison to the one-photon matrix elementk. This actually means that
in equation (5.4) the gain term has a high probability to take large positive values, which
depend, for fixedtint, practically only on the photon number in modeb, as is easily seen
from equation (3.2) taking into account that�a(na) � �b(nb). For the same reason, with
the help of equation (3.3), we deduce that, for givenR, the gain term in equation (5.3) is
terribly small and the only possible steady state for modea is n̄a = Na. Hence, in the case
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of 1b = 0, we recover the ordinary one-photon micromaser [3] with all its characteristic
attributes.

The other limiting case, that of the pure two-photon oscillations of the system [4], can
be realized in a microcavity for which the condition�b(nb) � 1b is satisfied, as was shown
at the end of section 3. This condition requires that if the detuning1b is not very large,
i.e. there is a mode in the microcavity close to the atomic resonance|e〉 → |i〉, the quality
factor of the cavity on this mode should be sufficiently low. Then the maximal (possible)
amount of photons in this modēnb = R/γb would be a small number, so that the one-photon
Rabi frequency�b = k

√
nb + 1 is small too. Increasing the quality factor of the cavity (and

consequently decreasingγb), to keep the above condition satisfied, one should increase the
detuning1b as well, making it actually very large whenγa = γb.

It is thus interesting to consider the intermediate range of detunings1b, when one would
expect to observe processes caused by a real competition between modesa andb inside the
cavity. For the illustration of the basic behaviour of the system in this intermediate regime,

Figure 4. Diagram of the values ofna andnb for which ˙̄na = 0 (a) and˙̄nb = 0 (b). The areas marked
with ‘+’ (‘ −’) in (a) and (b) correspond to the positive (negative) values ofFa andFb, respectively.
The mean thermal photon numbersNa = Nb = 0.1, and the cavity widthγa = γb = 10−2R; other
parameters are given in the text (section 5).
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we choose once again1b = 15k (as in section 3), since it is a rather convenient value of the
single-photon process detuning.

One can formally associate the right-hand side of equations (5.3) and (5.4) with the classical
force

Fa(na, nb) ≡ 2R|A3(na, nb)|2 − γa(na −Na) (5.7)

Fb(na, nb) ≡ R|A2(na, nb)|2 − γb(nb −Nb) (5.8)

the positive (negative) ‘force’ leads to the increase (decrease) of the photon number in the
corresponding mode. In figure 4 we plot the diagram of the values of photon numbers in
modesa andb for which ˙̄na = 0 (figure 4(a)), and ˙̄nb = 0 (figure 4(b)), i.e. the force for
the corresponding mode turns to zero. We see that there are well contoured regions of the
values ofna andnb where the corresponding force has a definite sign. Obviously, with the
decrease of the ratio of the pumping rateR to the decay rateγa and/orγb, the areas occupied
by the zones of ‘positive force’ in the corresponding mode decrease as well, with simultaneous
disappearance of the zones located around the largest values ofna and/ornb, respectively. The
magnitude ofR/γj for which the last positive zone in the corresponding modej disappears
(for a fixed number of photons in the other mode) can be viewed as the lasing threshold of this
mode, which is, in fact, also depends on the number of photons in the competing mode.

The possible steady states of the system are given by the condition˙̄na = ˙̄nb = 0. As is
seen in figure 5, this condition can be satisfied only for certain pairsnsa, n

s
b of the values ofna

andnb for which the forces in both modes vanish simultaneously. To examine the stability of
these steady states, we substitutena = nsa +δa andnb = nsb +δb, whereδa,b is a small deviation
from the steady state in the corresponding mode, into equations (5.3) and (5.4), respectively.

Figure 5. Diagram of the values ofna andnb for which the steady-state condition˙̄na = ˙̄nb = 0
is satisfied. Full circles represent the stable steady states of the system. All parameters are as in
figure 4.
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Applying the linearization in the parametersδa andδb, yields

δ̇a = αaδa + βaδb (5.9)

δ̇b = αbδb + βbδa (5.10)

where

αa = 2R
∂|A3(n

s
a, n

s
b)|2

∂na
− γa βa = 2R

∂|A3(n
s
a, n

s
b)|2

∂nb
(5.11)

αb = R∂|A2(n
s
a, n

s
b)|2

∂nb
− γb βb = R∂|A2(n

s
a, n

s
b)|2

∂na
. (5.12)

The steady-state solutionsnsa, n
s
b are stable if, and only if, all eigenvalues of the matrix of

coefficients of equations (5.9) and (5.10) have negative real parts:

Re(λ±) < 0 λ± = 1
2

[
αa + αb ±

√
(αa − αb)2 + 4βaβb

]
. (5.13)

Such stable operational points of the system are plotted differently (full circles) in figure 5. Of
course, if one varies the detuning1b (and also, the ratio of the pumping rateR to the decays

Figure 6. Time dependence of the mean photon numbers in modea (broken curves) andb (full
curves) of the cavity field. Initial conditions at timet = 0 are: (a) n̄a = n̄b = 30 and (b) n̄a = 40,
n̄b = 20. The time is measured in unitsγ−1

a . Other parameters are as in figure 4.
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γa,b) one obtains different stable operational points. Within a certain range of parameters,
however, the general picture of the system’s behaviour remains similar, gradually tending
to the appropriate limits of the limiting cases discussed above; namely, with the decrease
of 1b the stable points tend to be located around lower values ofna, reaching in the limit
1b → 0 thenb-axis in figure 5 (one-photon maser), and vice versa for1b � k (two-photon
maser).

Finally, in figure 6, we present the semiclassical time-dependent behaviour of the system
for two different ‘triggering’ values of the mean photon numbers in modesa andb. We see
that depending on the initial conditions forn̄a andn̄b the system evolves towards the nearest
reachable stable steady state (see figure 5). We will compare this result with the time evolution
of the photon number distribution in the following section, where we present a more rigorous
treatment of the system’s dynamics.

6. The quantum-mechanical evolution

In this section, we present further discussion of the features of the system in terms of an exact
quantum-mechanical time-dependent dynamics of the photon number distributions in modesa

andb, obtained through numerical solution of equations (5.1) and (5.2).

Figure 7. PotentialsUa andUb as a function of the photon number in the corresponding mode for
two different values of the detuning1b: (a) potentialUa in the case1b = 15k, nb = 5 (broken
curve), and1b = 10k, nb = 30 (full curve). (b) PotentialUb in the case1b = 15k, na = 50
(broken curve), and1b = 10k, na = 5 (full curve). Other parameters are as in figure 4.
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Figure 8. Time dependence of the photon number probability distributionpn in (a) modea and
(b) modeb. Initially at timet = 0 both modesa andbare in coherent states centred atna = nb = 30.
All parameters are as in figure 6.
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Figure 9. Time dependence of the photon number probability distributionpn in (a) modea and
(b) modeb in the case1b = 10. Initially at t = 0 the modesa andb are in coherent states centred
atna = 30 andnb = 10, respectively. Other parameters are as in figure 6.
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We have introduced in equations (5.7) and (5.8) the force for the corresponding mode. It
is straightforward, thus, to define the potentials

Ua(na, nb) = −
∫
Fa(na, nb) dna (6.1)

Ub(na, nb) = −
∫
Fb(na, nb) dnb (6.2)

which will allow us an easier interpretation of the dynamics of the system. In equation (6.1),
the quantitynb must be viewed as a parameter corresponding to the (fixed) number of photons
in modeb, and similarly in equation (6.2) the parameterna reflects the number of photons in
modea. Numerical integration of equations (6.1) and (6.2) shows that the potentialUb of the
modeb depends weakly on the parameterna, within the rangena ∈ [0:150] where the two-
photon Rabi frequency is much weaker than the single-photon one, whereas the dependence
of Ua on nb is very strong. Physically, this means that modeb does not feel the presence
of the competing two-photon transition (unless it is weak), and the behaviour of this mode
is determined almost solely by its own parameters, i.e. detuning1b, coupling strengthk and
the ratio of the pump to decayR/γb. The two-photon transition, in turn, apart from the
system’s parameters, also depends on the photon number in the one-photon modeb (see also
the discussion of figure 3 in section 3). In figure 7, we plot the potentialsUa andUb for two
different values of the detuning1b. Comparison with figure 6 shows that, in the semiclassical
picture, the mean photon numbersn̄a and n̄b tend to occupy the nearest ‘potential wells’ of
Ua andUb, respectively. Quantum mechanically, however, although on a short time scale
the evolution of the system is consistent with that given by semiclassical considerations, for
longer times deviations from the latter become significant (figure 8). Apart from the local
deterministic movement, the probabilitiesp(a) andp(b) experience a ‘diffusion’ through the
potential barriers into the neighbouring potential minima; the lower the potential barrier, the
higher the speed of this diffusion. This fact is illustrated in figures 8 and 9, which also show
that the peaks of the probabilitiesp(a) andp(b) are located around the potential wells ofUa and
Ub in figure 7. We can now specify that the time scale mentioned above refers to a diffusion
time which, unlike the single-mode laser where a diffusion constant is well defined, here must
be understood in reference to the results depicted in the figures. This is because an effective
diffusion constant in one mode depends on the state of the other. Obviously, the diffusion
intensity must be higher in the direction of the lowering of the mean potential. Thus for
sufficiently long time, the photon distributionsp(a) andp(b) will flow into the deepest well
(global minimum) of the corresponding potential, where the steady state is reached.

7. Conclusion

In conclusion, we have explored the traditional two-photon micromaser scheme [4], in a new
setting where the excited atoms pass through a cavity having two well separated modes which
connect the excited atomic level to a lower level by a two-photon transition and, in addition,
to an intermediate level by a single-photon one. In particular, we have explored the influence
of the various parameters of the system on the probability of the amplification or suppression
of the oscillations in one or the other mode of the cavity.

We have presented the derivation of the effective Hamiltonian of the system, by means of
which we have illustrated the features of the interaction of the atom with the pure state of the
cavity field. Further analysis of the system was carried out within the framework of the more
general master equation approach through which we investigated the semiclassical behaviour
of the system, as well as its quantum-mechanical evolution.
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As we anticipated, this system exhibits some novel features in comparison with either the
single- or the two-photon version alone. The multiple-well structure of the effective potentials
associated with the forces appearing in the semiclassical analysis is one of these novel features.
A number of further questions occurring in studies of the micromaser can also be explored in
this new richer context with perhaps some surprises. For example, in our treatment we have
seen that the effective potential for either mode is parametrically dependent on the number
of photons in the other mode. It would thus be interesting to explore in this model a two-
dimensional Fokker–Planck equation which would also allow for a better understanding of
the diffusion of probabilities discussed in the previous section. It is also worth examining the
cross-correlations between the two modes which are fed from the same upper level. Some
indications of such correlations can be discerned in figure 3 and noted in the relevant discussion.
We hope to report on such issues in a forthcoming paper. Finally, possible experimental studies
of this system may provide valuable insight into possibilities for the optical wavelength range.
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