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Abstract. We formulate the theory of a micromaser operating simultaneously on a one- and a
two-photon atomic transition. Departing from the complete microscopic Hamiltonian for this
composite ‘atom plus field’ system, we derive the equations governing its behaviour in the
semiclassical approximation and also the fully quantum mechanical master equation. Using
parameters corresponding to existing realizations of the one- and two-photon micromaser, we
obtain illustrative examples of some novel aspects of this system in the steady state as well as in
dynamical evolution.

1. Introduction

A rather serious experimental limitation in realizing a two-photon laser in the optical
wavelength range stems from the difficulty in constructing a cavity possessing the proper
finesse. The requirement is that no cavity mode is near resonance with a single-photon
transition from the upper (pumped) state to an intermediate one lying between the two states
connected by the desired two-photon transition. If that requirement is not satisfied, an atomic
system tuned to a cavity mode on resonance with a two-photon transition will most likely lase
into an adjacent mode near resonance with the single-photon transition. Thus a two-photon
laser may more often than not lase simultaneously into two modes, one pumped through
a single-photon transition and another pumped by the desired two-photon one. We have
addressed this issue in a recent paper [1] where we have developed the theory of this unusual
two-mode laser in which one of the modes is pumped by the two-photon transition.

This has motivated us to study the same problem in the context of the micromaser.
Micromasers pumped by either one- or two-photon transitions have been studied quite
extensively experimentally as well as theoretically [2—-6]. This of course is not the place
for a review of the vast literature on these topics which can be found in [7]. The difficulty with
the finesse in the optical wavelength range discussed above does not arise in the two-photon
micromaser because the wavelength allows the design of the appropriate cavity. For the same
reason, one can envision designing a cavity which does have a second mode near resonance
with the single-photon transition to an intermediate Rydberg state. It may even be possible to
tune such a resonance. A further degree of flexibility in adjusting the detuning comes from
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the possibility of choosing slightly different Rydberg states. In other words, one can tune both
the cavity as well as the atomic system. That is the problem we have studied in this paper; a
micromaser pumped by two- and one-photon atomic transitions at the same time. Given recent
progress in microcavities, one may also envision the implementation of such a system even in
the context of the microlaser [8]. It is not a (micro)maser (laser) operating in two modes, but
rather a (micro)maser (laser) operating in two modes one of which is inherently nonlinear.

The theory of a two- or multi-mode laser is of course a mature topic but the issue here is
different in a rather fundamentally significant way. In the standard two-mode single-photon
laser, the two competing modes feed on the same gain curve but each of them alone and well
below threshold represents a linear process. In the present context, one of the modes exhibits a
nonlinear dependence on the respective field down to zero intensity. Moreover, the two modes
now feed on two different gain curves. As for the micromaser case, the issue has never been
considered as it can be avoided, while for the laser, it is most often an inconvenient fact of
reality. Our purpose then is to explore, in a controlled setting, the fundamental features of the
resulting phenomena.

This paper is organized as follows. In section 2 we derive the effective Hamiltonian of the
system, which is then used in section 3 for the analysis of the interaction of a single atom with
the pure state of the cavity field. The more general master equation approach is discussed in
section 4, and the formalism developed there is applied to the exploration of the semiclassical
behaviour of the system in section 5, as well as its quantum-mechanical evolution in section 6.
The paper is closes with the conclusions outlined in section 7.

2. Derivation of the effective Hamiltonian

The atom with the level configuration depicted in figure 1, where unperturbed atomic levels
le), |i) and|g) have energiesw,, hw; andhw,, respectively, interacts with two modes of
the cavity radiation field with well separated frequencigsandw,. These frequencies are
detuned from the atomic resonances by the detunings

Aa = (wi - wg) — Wq Ap = (we - (,(),‘) — Wp (Am Ap L wy, (Ub) (21)

¥4

Figure 1. Schematic representation of the atomic system.
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and for simplicity we assume that modés in perfect two-photon resonance with the atomic
transitionle) — |g), so that(w, — w;) — w, = —A,.

We begin with the complete microscopic Hamiltonian of the combined system ‘atom plus
cavity field’, which, in the electric dipole and rotating-wave approximations, can be written as

H = Hp + Hp + Hiy (2.2)
whereHpa, Hr and Hiy; are, respectively, the atom, field and interaction terms:
Hp = Tw,le)(e| + e [i) (i] + hag|g) (8] (2.3)
He = ho, (aTa + %) +Ea);,(bTb + %) (2.4)
Hiy = kS (ale) (i] +a'|i) (e]) + RS (ble) (i | + bT|i){e])

+hk'y (ali)(g| +a'|g)i]) + Tk, (bli)(g] +bTIg) i) (2.5)

In these equations, the field modesandb are described, respectively, by the creation and
annihilation operators®, « andb, b. The quantit)kf,?) is, for instance, the coupling strength
of modea with the atomic transitioe) — [i), etc:

b _ _ (€|D|_l>5a,b (2.6)
el h
a <l|D|g>€ab

e 27)

where (e|Dl|i) and (i|D|g) are the matrix elements of the electric dipole operafpr

Eap = (hw,ap/260V)Y? is the field per photon for the corresponding mode, &his the
cavity volume. Taking into account the fact that — w, = A, + Ay K w, 5, We can neglect

the difference betweefi, and&, and drop the superscript in the coupling constant3 his
simplification has practically no impact on the generality of the discussion and results which
can be easily adapted to the case of two different coupling constéthtg®, if that were
necessary. Consistently with our model (figure 1), we assume|Mat>> |A,l, kei, kig
throughout this paper.

In the number state representation for both modes of the cavity field, the Hamiltonian
(2.2) has non-vanishing matrix elements only between the following six states of the combined
atom +field systemte, n,, np), i, ng + 1, np), li, ng, np+1), 12, ng +2,np), 1g, ng +1, n, +1)
and|g, n,, n, +2), where the first element in the kets represents the state of the atom, while the
second and the third elements indicate the state of the madelb, respectively, containing
the corresponding number of photons. We assume that a single atom initially prepared in the
excited levele) enters the cavity whose two modes under consideration, prior to the interaction
with the atom, are in the pure number stgies and|n,), respectively. Thus, the initial state
of the system iy (0)) = |e, n,, np). FoOr the moment, we assume that both cavity modes
are not dumped (later on in the derivation of the master equation of the field we discuss the
validity of such an assumption), which allows us to describe the system evolution using the
Schibdinger equation

diy ()
o = HIvO). (2.8)

The state of the system at a subsequent timél be represented by the linear combination
of the six basis states, with the complex probability amplitudes determined by (2.8).

The differential equations for the complex probability amplitudes of the states +
1, np), g, n, +1,n, +1) and|g, n,, n, + 2) are of the form (in the interaction picture)

ih

dy _
|a =0y + B() (2.9)
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where® is such that®| > B(¢) (in our case® containsA,). Equation (2.9) can be written
in an integral form as

y(t) = —i /l dr’ exp[i®@ (' — )] B(t). (2.10)
0

For time intervalg sufficiently short, so thaB(z") does not change much but the exponent in
(2.10) experiences many oscillations ovee [0 : ¢], we can integrate this equation making
the slowly varying envelope approximation fBtz) and, after performing the time averaging,
we obtain{y(t)) = B(t)/©.

Following the above procedure we obtain a set of algebraic equations for the complex
probability amplitudes of the states n, + 1, n,), |g,n, + 1,n, + 1) and|g, n,, n, + 2).
Expressing these amplitudes through the probability amplitdges, andA; of the remaining
three statefe, n,, ny), |i, nq, np + 1) and|g, n, + 2, n;), respectively, we substitute them into
the equations foA;, A, and Az found from (2.8). The result is

keik2\/ (ng + D2(ny, + 1))
Ap

dA; k2.(n, + 1)

i— = —A1+(ke,~ np +1—

dr A, Aa(Ag+ Ap)
_keikig (”aA+ Dng +2) As (211)
A kg,'kl?\/ ng+ 12, +1
|g= kei I’lb+1— § ( )(b ) Al
dr Aa(Aa + Ah)
k2, (n,+2) ki (ng+1) k2 /(g + D(ng + 2)(np, + 1)
+H —Ap+ 2 + 2 — =% 3
Z(Aa + Ah) Aa + Ab Aa(Aa + Ab)

(2.12)
dAs  keikig/ (g * D(ng + 2) ki (ng + D(ng +2)(ny, + 1) kfy(ng +2)
I— = - A1 — 2— As

dt A, Ay(Ag + Ap) A,
(2.13)

where we have dropped the tek;?g(nb +1)/(A,+Ayp) inthe non-resonant denominators, since
itis negligible in comparison with\,. Now consider the physical meaning of the various terms

of the above equations: first of all, we note that the terms proportiokd)/ iy, (A, + A,) are
responsible for certain three-photon couplings between the atomic levels. Their contribution
can be neglected in comparison with the fir§2; Y and the second<¥,,) order couplings

keiki at 1 at 2
Qa (na) = - - (n )(n )

(2.14)

a

Qp(np) = keiv/np + 1 (2.15)

since the number of photoms, n,, is not expected, in this context, to be so large as to violate
the hierarchy of the orders of perturbation theory. This we have also checked quantitatively
in detail using parameters typical for the two-photon micromaser experiments (listed later in
section 5). As long as, andn, are not larger than 100, these terms can be safely neglected.
The termskZ (ng + 1)/ A, in (2.11),k% (1 + 2) /2(Ag + Ap) + K2 (na + 1) /(Mg + Ap) in (2.12)

andk? (n, +2)/A, in (2.13) represent the shift of the corresponding level;titependent

part of each term gives the Stark shift of the atomic level, whereas the remaining constant is
part of the vacuum shift, which must be assumed to be incorporated into the energy of the
atomic level. Under the conditiok, = k;, = k, the differential Stark shift of the atomic
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levels|e) and|g) vanishes and equations (2.11)—(2.13) can be greatly simplified:
JdA;

i = Qp(np) Az + Qu(ny) Az (2.16)
dA
|d—t2 = Qp(np) A1+ Alng, np) Az (2.17)
dAs
=8 _Q,(n,)A 2.18
i & (ng)A; ( )
where
k2(4n, +
Alng.ny) = — A, + & Ga * np) (2.19)

284+ Ap)

is the effective detuning of the moderom the atomic transitiofe) — |i).
Equations (2.16)—(2.18) imply the effective Hamiltonian

Herr = Tk (ble) (i| + bTi) (e]) + Fua®le) (g] +a™"g) (el) (2.20)

combined with the fact that the detunign,, n,) is a function of the number of photons in

both modesg andb, of the cavity field. (In equation (2.20) the parametet —k?/A, is the
coupling strength of the two-photon process.) Thus, the problem is reduced to the three-level
system, and the state vectgr(s)) can be expanded at any> 0 as

[Y (1)) = A1(?) le, ng, np) + A2(t) |i, ng, np + 1) + A3(?) |g, ng + 2, np) (2.21)
with the initial conditionsA1(0) = 1, A»(0) = A3(0) = 0.

3. The energy exchange between atom and field

To find the complex probability amplitudes; (r) (j = 1, 2, 3), we take the Laplace transform

of the equations of motion (2.16)—(2.18). The resulting system of algebraic equations can be
solved exactly, but for an arbitrary value &fn,, n;,) the procedure involves solving a cubic.

In the special case ak(n,, n,) = 0, this cubic factorizes and the inverse Laplace transform

gives
Aq(t) = cos(,/Qg +Q2 t) (3.1)

Ag(t) = —i\/% sin(,/szg +Q2 t) (3.2)
a b

As(t) = —i \/% sin(,/szg + Q2 t). (3.3)
a b

This shows that the populatidqrd1(r)|? of the atomic levele) experiences Rabi oscillations
with the frequencx/ Q2 + Q2. Thus, there is a periodic exchange of energy between the atom

and both cavity modes. The quantity,(z)|? represents the probability of adding one photon
into modeb which contained:, photons at = 0. Similarly, |A3(r)|? gives the probability

for modea to gain two photons, since each transitiep— |g) leads to the emission of two
photons. In figure 2 we plot the time dependence of the probabiliigs)|> and|As(7)|? for

the case when the cavity contains initially = 10 andn;, = 10 photons, using the analytical
expressions (3.2) and (3.3). For comparison we plot in the same graph the probabilities
|A2(t)]? and|As(t)|? obtained from the numerical solution of equations (2.16)—(2.18) for the
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Figure 2. Time dependence of the probabilitiet, |2 and|As|? in the case where, = nj, = 10,
obtained from the analytical expressions (3.2), (3.3) (full curves), and from the numerical solution
of (2.16)—(2.18) whem;, = 0 (broken curves). The time is measured in units of, A, = 10k.

same photon numbers ang = 0. First of all, we note that the numerical solution in this case
coincides almost completely with the analytical one, which is obtained under the assumption
A(ng4, np) = 0. This fact is easily understood from equations (2.14), (2.15) and (2.19) which
show that forA, = 0 and not very large number of photong;, the one-photon effective
detuningA (n,, n,) becomes negligible in comparison with the Rabi frequency of this transition

Q2 (np). Therefore, dropping the second term in (2.19) and applying for the probabjifitjes
equations (3.2) and (3.3) involves a very small error, and in this special case we can analyse
the behaviour of the system through the analytical expressiond f¢f.

In the absence of the detuning, the probabilitiegA,|? and|A3|? are proportional to the
Lorentzians in front of the sines in (3.2) and (3.3), respectively, and are, therefore, determined
by the Rabi frequency2; of the corresponding transition. Hence, for the case of an equal
number of photons in both modesandb, we find that the initially excited atom exchanges
energy basically with the mode only, which is coupled to the one-photon transition. The
situation does not change much with the increase of the photon number inanongl the
reasonable amount, < 100, since even in that case, the two-photon Rabi frequency still
remains much smaller than the single-photon one.

To increase the two-photon transition amplitude we choose the detuning of the competing
single-photon process to be appropriately large= 15k (figure 3). In figure 3§) we see
that the amplitude of the one-photon oscillatigds|? is reduced significantly, whereas the
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Figure 3. Time dependence of the probabilitiet|? (full curve) and|As|? (broken curve) in the
caseA, = 15, n, = n, = 10 @), andn, = 20,n, = 10 (b), obtained from the numerical
solution of (2.16)—(2.18). Other parameters as in figure 2.

probability of the two-photon transitiojds|?> now oscillates with a much lower frequency

but with a highly enhanced amplitude, although remaining smaller (by a factor of two) than

the single-photon one. When we sgt= 20 (butn, = 10 still) we find that the amplitude

of |A3(1)|? is increased dramatically (figuret§], which is due to the quadratic dependence

of the two-photon transition on the field’s intensity (or the photon number). On the other

hand, the maximal magnitude of the one-photon oscillations amplitude is almost unchanged,

although we see some amplitude modulation of the probalyiisy? with the oscillations of

| Az|? (this effect becomes more pronounced for the larger values sf 100). This illustrates

the fact that the one-photon transition—linear in the field intensity—is rather insensitive to

the existence of the competing two-photon process, except for the modulation effect, which

is rather weak when,, n;, < 100. In contrast, the numerical simulations show that the two-

photon transition amplitude depends strongly on the number of photons in the competing mode,

which suppresses significantly the two-photon oscillations with the increase of its intensity.
Consider finally the case of a very large detuning so that for a given definite number

of photons, andn,, the condition2, (n,) < A(n,, np) is satisfied. This allows us to apply
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to equation (2.17) the same procedure as for equation (2.9), obtaining

Qp(np) A Qp(np)
Mg~ 2 a, € (3.4)

A;

Then the solution for the remaining two complex probability amplitudesnd A3 is found
from equations (2.16) and (2.18) to be

A1(t) = coqQ,1) (3.5)
As(t) = —isin(Q,1) (3.6)

which describes the ordinary two-photon Rabi oscillations between the Iyedad |g),
practically unaffected by the presence of the competing nhode

4. The master equation

In this section, we derive the general master equations for both modes of the cavity field. For
this purpose, we adopt the standard micromaser assumptions [3, 4]; namely, a monoenergetic
beam of excited atoms crosses the two-mode cavity at a flux low enough that, at most, one
atom at a time is present inside the resonator. tLbe the arrival time of théth atom and
tint the time spend by the atom inside the cavity. Then the assumption above implies that
tinn < fi+1 — 7, Which allows us to neglect the atom—atom interaction inside the cavity and
consider the contribution of each atom independently. We also suppose that the cavity damping
ratey, , on both frequencies, andw, is small enough in order for the excited atoms to be
able to build up the field with large number of photonvghl > t;+1 — t;. Combined with the
previous inequality, this gives <« yafbl and the field’s relaxation process can be neglected
during the time of interaction,; with the single atom. With these approximations, we can
adopt the standard procedure in micromaser theory [9, 10] for the derivation of the master
equation of our system.

Consider first the single-atom incremental contribution to the state of the cavity field.
Prior to interaction with the atom, at= 0, the initial state of each mode of the cavity field
can be represented quite generally as

PP =" p, Oln;)Yim;l  j=a,b. (4.2)
The state of the atom at this moment of time is

P (0) = le){e| (4.2)
and the total density operator of the atom + field system is just a tensor product of (4.1) and
(4.2):

p(0) = p®(0) ® p(0) ® p”(0)
= Y 20000, Ol na, ) e, ma, mp| (4.3)

Ng,MqiNp,Mp

wherele, ng, ny) = le) ® [n4) @ |ny).
After the interaction, at = rjy, the system evolves to the state

pln) = > N (0, (O) W,y tint)) (Wi, (i) (4.4)

Ng,Mq3iNp,Mp
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where|y,,, ., (1)) is given by equation (2.21). The state of each mode of the field at this moment
of time is described by the reduced density operator

0@ (tin) = Trp[Tr [0 tin)]] = Pa(tin) 0 (0) (4.5)
0P (tine) = Tra[Tr o[ ptn)]] = Po(tin) 0 (0). (4.6)

The pump operatoP; (#ir) of modej contains the change of the density operat@t of the
corresponding mode due to the interaction with one single atom. Thuatafs have passed
through the cavity during time the density operator of each mode of the cavity is given by

oY) =[P;]"p(0). (4.7)

Equation (4.7) describes a so-called regularly pumped micromaser in the absence of decay of
the cavity field. More generally, however, in the time interval between the entrance of two
successive atoms in the cavity, both cavity modes decay with the corresponding,rates
towards thermal equilibrium with mean numbers of thermal phodMnspresent in the cavity

due to its coupling to the environment having a finite temperature. This process is described
by the standard [9, 10] master equation

d
5P = 1P = 3ra(Na + DRapa’ —alap® — pala)

+%VaNa(2aT,0(“) —aa'p®@ — p@aqah 4.8)

and the analogous equation fgf’, with the replacement <> b. Moreover, if the time interval

t;+1 — t; between the two subsequent atoms fluctuates, equation (4.7) becomes inapplicable.
Let the arrival times of the incoming atoms obey a Poisson distribution, which implies that
the probability for an excited atom to enter the cavity betweand: + 8¢ is R §¢, where

R = ((t;+1 — t;)"1) is the average injection rate. Then, each mode of the field atrtinde is

made up of a mixture of states corresponding to atomic excitation and no atomic excitation:

oDt +58t) = R8tPjp (1) + (L— R8t)p (1) (4.9)

which yields, in the limitsz — 0,

d

PV = RIPipY @0 = pP 0. (4.10)

Also including the relaxation process, we obtain, finally, the master equations governing the
time evolution of both cavity modes:

d . . . . .

P =LV O+ RIP V(1) = pV ()] j=ab (4.11)

with Lp(¢) given by equation (4.8). With the help of equations (4.5), (4.6) and (4.4), in the
number state representation of the field, the master equations (4.11), in component form, can
be written as

d b
o Prem, = —Rei, | 1 =Y o3 Al ny, tind) A% (M, . tint)

np z=12
b
RO 5 2 Y P Ag(ng — 2.y, tint) A3(mg — 2, np, fine)
np

_%Va[nu +my+ ZNa (na +tm, + 1)] p(a)

Na,Mq

+Ya(Ng + 1)\/ (ng + D(m, + 1) ,0,(511 mg+1 + Y Noy/ngmy 'Or(tj)—l,ma—l (412)
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for modea, and

d
dr prgl;)mh = py(,ls)m,,[ Z p,(::)na Z Az (nav np, tint)A;F(na’ mp, tint)]
ng z=1,3
b
RN 11 D PN Aa(na iy — L. tint) AS(na, my — 1, tiny)
Ng
-1 +my, + 2N +my, + 1] p®
5¥elnp +myp p(np +my + D] o,
b

Ny + DV Gt + 1) (miy + 1) 0541 1+ VoNon/mm5 05, 1,1 (4.13)

for modeb.

These equations imply that the interaction timeis fixed, i.e. all atoms pass through
the cavity with the same speed. The generalization to the case when there is a distribution of
atomic velocities is straightforward [4], but for the sake of simplicity, from now on we assume
thatf, = constant.

Equations (4.12) and (4.13) are the central equations of this paper. They are similar to those
one obtains for the ordinary one- and two-photon micromasers and lasers with one important
new aspect: each of these equations includes the averaging over the state of the other mode.

In the following section, from equations (4.12) and (4.13) we will obtain the semiclassical
evolution of the system, as well as analyse the dynamics of the photon number distribution in
section 6.

5. The semiclassical evolution

Denoting byp'® = p{@ andp’ = p{?) the diagonal elements of the density operator of

the correspondlng mode of the field, from equations (4.12) and (4.13) we obtain

dP,(a)
—q= = ~Re) Do P Asie m) P+ Rpy 5 3 pi As(n — 2,m)I?
np np
~Yalna + Na(@n4 + D1p + va(Na + D(ng + Dy + vaNanapl”y  (5.1)
b
dP,(I,j) _ (b) @) A 24 pp® @) A ING
o= = —Re) Y P 1Aona np) P+ R,y Y pi | As(ng, ny — )

Na Na
—vplne + Np(2np, + 1)]17,(5) +yp(Np + D (np + 1)P,(s)+1 + VbanbP,(,i),l (5.2)

where the explicit dependence of the probabilit'm,'s|2 ontn: has been omitted, because, as
mentioned above;, is fixed.

The mean value of any physical quantify(n), which is the function of the photon
numbern, is given by( f (n)) = ), p. f(n). The semiclassical approximation is obtained by
assuming that the photon number distribution is highly peaked around some: Jagehat
(f(n)) =~ f((n))

Multiplying both sides of (5.1) and (5.2) by, andn,, respectively, and summing ovey
andn,;, we obtain, in the semiclassical approximation, the equations of motion for the mean
photon numbers in both modesandb:

di, _ _

5 = DNl = 2RIAs(ia, )2 = Yaliia = No) (5.3)
ny

diy » _

&= anp = R|A2(iia, p)|* = v (7ip — Np). (5.4)
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In these equations the first terms on the right-hand side represent the gaimawd;, due

to the downward transitiong) — |g) andle) — |i) of the excited atoms, respectively. The
factor of 2 in (5.3) comes from the fact that each transition— |g) causes the emission of

two photons. The second terms in equations (5.3) and (5.4) are responsible for the relaxation
of n, andn, to the mean thermal photon numbe¥s and N,, inside the cavity. If, ideally,

every atom leaves the cavity in leyél, from equation (5.4) we find that the steady-state value

for the photon number in modewould ben, = R/y, (providing N, = 0). Similarly, from
equation (5.3), in the steady state, for the maximal possible number of photons immmede
obtainn, = 2R/y, (N, = 0).

The reader who is familiar with the theory of the homogeneously broadened two-mode
laser (see, for example, [10], chapter 6) will notice a difference between the differential
equations governing the intensities in that case and our equations (5.3) and (5. 4ndf,
denote the intensities in the two modes, those equations have the form

Iy = 2I1(a1 — B1l1 — O1212) — y1la (5.5)

I = 2Ix(az — B2l2 — O211h) — y2I2 (5.6)
wherea; , are the linear gain constanf,, the self-saturation coefficien®, ,, 6, 1 the cross-
saturation coefficients and , the damping rate of the corresponding mode. These equations
allow the two modes to oscillate independently eveR i I, providedods », 621 < i1, B2. It
appears that our equations (5.3) and (5.4) do not allow for such a case Qyherns2,) except
for very short times, as can be seen by examining the foray@hdA3 in equations (3.2) and

(3.3) for smallt, so that,/Q2 + Q2 t « 1. This seems to be a rather fundamental difference

between the two systems. Of course one needs to keep in mind that atomic line broadening
does not occur in the micromaser; but it is doubtful that this is the only reason for the above
difference in behaviour.

Before proceeding further, let us examine the relevance of the conditions established at
the beginning of section 4 to real experiments performed for the micromaser [2,4,6]. In a
microwave cavity, with the quality factap ~ 10°—~1 for both modes of the cavity field, we
have for the damping rates , ~ 10?~10°* s~1. Choosing a pump rat® > y,, ensures that
many atoms pass through the cavity during its damping timeg let 10° atom/s. In order
for the atoms to be sufficiently dilute{ < R~) we setry,, = 10°° s, which is consistent
with the experimental situation when atoms with thermal velogity 10°—10° m s™* cross
a cavity having a transverse dimension of about a few mm. Since the coupling cdnfiant
Rydberg atoms is ordinarily equal to%a.(° s~1, even for not very large numbers of photons
na., n, < 107 present in the cavity, atoms undergo many cycles of Rabi oscillations during
the interaction time;,;. To be definite, we choose furthgy, = 107°R, f;y = 10k~* and
A, = 10k as before.

Consider first the case of the exact one- and two-photon resonances of thadés
with the atomic transitionf) — |i) and|e) — |g), respectively. It was shown in section 3,
in the discussion of figure 2, that in this case during the interaction time with the cavity
field, a single-atom exchanges energy primarily with médeso that the amplitude of the
oscillations of|A,|? is close to 1, whereas the amplitude of the oscillation$Aaf? is a
few orders of magnitude weaker, which is due to the smallness of the two-photon coupling
constantu in comparison to the one-photon matrix elemént This actually means that
in equation (5.4) the gain term has a high probability to take large positive values, which
depend, for fixed;y, practically only on the photon number in moélgas is easily seen
from equation (3.2) taking into account th@f, (n,) < ©,(n;). For the same reason, with
the help of equation (3.3), we deduce that, for givgnthe gain term in equation (5.3) is
terribly small and the only possible steady state for moden, = N,. Hence, in the case
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of A, = 0, we recover the ordinary one-photon micromaser [3] with all its characteristic
attributes.

The other limiting case, that of the pure two-photon oscillations of the system [4], can
be realized in a microcavity for which the conditié (n,) < A, is satisfied, as was shown
at the end of section 3. This condition requires that if the detuipdgs not very large,
i.e. there is a mode in the microcavity close to the atomic resonahce- |i), the quality
factor of the cavity on this mode should be sufficiently low. Then the maximal (possible)
amount of photons in this modg = R/y, would be a small number, so that the one-photon
Rabi frequency2, = k+/n, + 1 is small too. Increasing the quality factor of the cavity (and
consequently decreasing), to keep the above condition satisfied, one should increase the
detuningA, as well, making it actually very large whep = y;,.

It is thus interesting to consider the intermediate range of detunipge/hen one would
expect to observe processes caused by a real competition betweenarardtsinside the
cavity. For the illustration of the basic behaviour of the system in this intermediate regime,

50.0

(@)

40.0 - 7
30.0 ]

20.0 | S ST

100 IR 7

OO | > E | I | I
0.0 20.0 40.0 60.0 80.0 100.0

20.0

Figure 4. Diagram ofthe values af, ands,, forwhich#, = 0(a) andii, = 0 (b). The areas marked
with ‘+’ (* =) in (@) and ) correspond to the positive (negative) valuegpandF},, respectively.
The mean thermal photon numbe¥s = N, = 0.1, and the cavity widthy, = y, = 1072R; other
parameters are given in the text (section 5).
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we choose once agaif, = 15k (as in section 3), since it is a rather convenient value of the
single-photon process detuning.

One canformally associate the right-hand side of equations (5.3) and (5.4) with the classical
force

Fo(na, np) = 2R|A3(ng, np)1? — va(ng — Ny (5.7)
Fy(na, np) = R|A2(ng, np)|? — vy (np — Np) (5.8)

the positive (negative) ‘force’ leads to the increase (decrease) of the photon number in the
corresponding mode. In figure 4 we plot the diagram of the values of photon numbers in
modesa andb for whichn, = 0 (figure 4@)), andn, = 0O (figure 4)), i.e. the force for
the corresponding mode turns to zero. We see that there are well contoured regions of the
values ofn, andn, where the corresponding force has a definite sign. Obviously, with the
decrease of the ratio of the pumping r&eo the decay ratg, and/ory,, the areas occupied
by the zones of ‘positive force’ in the corresponding mode decrease as well, with simultaneous
disappearance of the zones located around the largest valugarmd/orm,,, respectively. The
magnitude ofR/y; for which the last positive zone in the corresponding medisappears
(for a fixed number of photons in the other mode) can be viewed as the lasing threshold of this
mode, whichis, in fact, also depends on the number of photons in the competing mode.

The possible steady states of the system are given by the condgljtien, = 0. As is
seen in figure 5, this condition can be satisfied only for certain pgijrs;, of the values of,
andn,, for which the forces in both modes vanish simultaneously. To examine the stability of
these steady states, we substityte= n’ +§, andn;, = n} +3§;, wheres, , is a small deviation
from the steady state in the corresponding mode, into equations (5.3) and (5.4), respectively.

100.0

Figure 5. Diagram of the values of, andn; for which the steady-state conditidm = r"zb =0
is satisfied. Full circles represent the stable steady states of the system. All parameters are as in
figure 4.
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Applying the linearization in the parametésands,, yields

8[1 = ausa + ,8[,5[7 (59)
8p = @Sy + BrSa (5.10)
where
A 5 5y12 1A s 512
o = 2R WA I g o 1S ) (5.11)
ng ony,
1A s’ 512 1A s, s$Y12
wy o RMAZIL P dlAs )2 512)
any, ong

The steady-state solutiomg, n;, are stable if, and only if, all eigenvalues of the matrix of
coefficients of equations (5.9) and (5.10) have negative real parts:

ReGs) <0 e = Blaw + ot viww — )2 + 48,5, |- (5.13)

Such stable operational points of the system are plotted differently (full circles) in figure 5. Of

course, if one varies the detunirg, (and also, the ratio of the pumping raketo the decays

30.0 ‘ \ ‘ T
7\\
\
\
200  \ N
\
\
N\
\\
100 ~ N
St \\
2 T~
§ 0.0 (@ ! ! ! \“_T———-
§ ®) |
) [ s T T T A
< 500 - il |
= 8 / J
B -
E _
30.0 N
- _
100 L 1 L 1 L 1 L 1 L
0.0 1.0 2.0 3.0 4.0 5.0
Time

Figure 6. Time dependence of the mean photon numbers in aogeoken curves) and (full
curves) of the cavity field. Initial conditions at time= 0 are: @) 7, = i, = 30 and b) 7, = 40,
ity = 20. The time is measured in units*. Other parameters are as in figure 4.
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Ya.») ONe obtains different stable operational points. Within a certain range of parameters,
however, the general picture of the system’s behaviour remains similar, gradually tending
to the appropriate limits of the limiting cases discussed above; namely, with the decrease
of A, the stable points tend to be located around lower values, ofeaching in the limit
A, — 0 then,-axis in figure 5 (one-photon maser), and vice versaAfiprs> k (two-photon
maser).

Finally, in figure 6, we present the semiclassical time-dependent behaviour of the system
for two different ‘triggering’ values of the mean photon numbers in madaadb. We see
that depending on the initial conditions fey andrn, the system evolves towards the nearest
reachable stable steady state (see figure 5). We will compare this result with the time evolution
of the photon number distribution in the following section, where we present a more rigorous
treatment of the system’s dynamics.

6. The quantum-mechanical evolution

In this section, we present further discussion of the features of the system in terms of an exact
quantum-mechanical time-dependent dynamics of the photon number distributions iranodes
andb, obtained through numerical solution of equations (5.1) and (5.2).

10000 , , : : : :
(a)
5000 .
DN
0 ==~ e
~ -~_s
\_/-\\’/—-\\//
-5000 —_—
0.0 40.0 80.0 120.0 160.0
na
1000
500
D.:

—500 . | . | . | .
0.0 20.0 40.0 60.0 80.0
n,

Figure 7. Potentiald/, andU, as a function of the photon number in the corresponding mode for
two different values of the detuning,: (a) potentialU, in the casen, = 15, n, = 5 (broken
curve), andA, = 10k, n, = 30 (full curve). b) PotentialU, in the caseA, = 15k, n, = 50
(broken curve), andy, = 10k, n, = 5 (full curve). Other parameters are as in figure 4.
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We have introduced in equations (5.7) and (5.8) the force for the corresponding mode. It
is straightforward, thus, to define the potentials

Ua(nas nb) = - / Fa(nav np) dna (61)

Up(ng,np) = —/ Fy(ng, ny) dny, (6.2)

which will allow us an easier interpretation of the dynamics of the system. In equation (6.1),
the quantityn,, must be viewed as a parameter corresponding to the (fixed) number of photons
in modeb, and similarly in equation (6.2) the parametgrmreflects the number of photons in
modea. Numerical integration of equations (6.1) and (6.2) shows that the poténtifithe
modeb depends weakly on the parametgr within the range:, € [0:150] where the two-
photon Rabi frequency is much weaker than the single-photon one, whereas the dependence
of U, onn, is very strong. Physically, this means that maddoes not feel the presence

of the competing two-photon transition (unless it is weak), and the behaviour of this mode
is determined almost solely by its own parameters, i.e. detuijpgoupling strengtit and

the ratio of the pump to decai/y,. The two-photon transition, in turn, apart from the
system’s parameters, also depends on the photon number in the one-photaoh (seelalso

the discussion of figure 3 in section 3). In figure 7, we plot the potertialand U, for two
different values of the detuningy,. Comparison with figure 6 shows that, in the semiclassical
picture, the mean photon numbersandrn, tend to occupy the nearest ‘potential wells’ of

U, and U,, respectively. Quantum mechanically, however, although on a short time scale
the evolution of the system is consistent with that given by semiclassical considerations, for
longer times deviations from the latter become significant (figure 8). Apart from the local
deterministic movement, the probabilitip&” and p® experience a ‘diffusion’ through the
potential barriers into the neighbouring potential minima; the lower the potential barrier, the
higher the speed of this diffusion. This fact is illustrated in figures 8 and 9, which also show
that the peaks of the probabilitig&” andp® are located around the potential wellSgfand

U, in figure 7. We can now specify that the time scale mentioned above refers to a diffusion
time which, unlike the single-mode laser where a diffusion constant is well defined, here must
be understood in reference to the results depicted in the figures. This is because an effective
diffusion constant in one mode depends on the state of the other. Obviously, the diffusion
intensity must be higher in the direction of the lowering of the mean potential. Thus for
sufficiently long time, the photon distributiong® and p® will flow into the deepest well
(global minimum) of the corresponding potential, where the steady state is reached.

7. Conclusion

In conclusion, we have explored the traditional two-photon micromaser scheme [4], in a new
setting where the excited atoms pass through a cavity having two well separated modes which
connect the excited atomic level to a lower level by a two-photon transition and, in addition,
to an intermediate level by a single-photon one. In particular, we have explored the influence
of the various parameters of the system on the probability of the amplification or suppression
of the oscillations in one or the other mode of the cavity.

We have presented the derivation of the effective Hamiltonian of the system, by means of
which we have illustrated the features of the interaction of the atom with the pure state of the
cavity field. Further analysis of the system was carried out within the framework of the more
general master equation approach through which we investigated the semiclassical behaviour
of the system, as well as its quantum-mechanical evolution.
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As we anticipated, this system exhibits some novel features in comparison with either the
single- or the two-photon version alone. The multiple-well structure of the effective potentials
associated with the forces appearing in the semiclassical analysis is one of these novel features.
A number of further questions occurring in studies of the micromaser can also be explored in
this new richer context with perhaps some surprises. For example, in our treatment we have
seen that the effective potential for either mode is parametrically dependent on the number
of photons in the other mode. It would thus be interesting to explore in this model a two-
dimensional Fokker—Planck equation which would also allow for a better understanding of
the diffusion of probabilities discussed in the previous section. It is also worth examining the
cross-correlations between the two modes which are fed from the same upper level. Some
indications of such correlations can be discerned in figure 3 and noted in the relevant discussion.
We hope to report on such issues in a forthcoming paper. Finally, possible experimental studies
of this system may provide valuable insight into possibilities for the optical wavelength range.
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