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Abstract. We discuss electromagnetically induced transparency in a cold
ensemble of atoms optically excited to the Rydberg states. Strong dipole-dipole
or van der Waals interactions between the atomic Rydberg states translate into
large nonlocal nonlinearities for a propagating probe field. In the case of weak
quantum fields, this can be used to attain a conditional phase shift of π between
pairs of single photons realizing a deterministic photonic phase gate. For stronger
fields, long-range interactions between the atoms constrain the medium to behave
as a collection of superatoms, each comprising a blockade volume that can
accommodate at most one Rydberg excitation. The propagation of a probe field
is affected by its two-photon correlations within the blockade distance, which
are strongly damped due to low saturation threshold of the superatoms. Our
calculations reproduce and interpret the results of recent experiments.
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1. Introduction

Strong dipole–dipole (DD) or van der Waals (VdW) interactions between highly
excited Rydberg states of atoms [1] constitute the basis for a number of promising
schemes for quantum information applications [2] and interesting many-body effects
[3, 4, 5, 6, 7]. Some of these schemes employ the dipole blockade mechanism [8]
which suppresses multiple Rydberg excitations within a certain interaction (blockade)
volume. Employing electromagnetically induced transparency (EIT) [9, 10] in a
ladder configuration, one can translate the DD or VdW interactions between optically
excited Rydberg states of atoms into sizable interactions between the photons
[11, 12, 13]. Several experiments on EIT with Rydberg atoms were recently performed
[14, 15, 16, 17].

Due to the strong, long-range interactions of the Rydberg atoms, the theoretical
description of EIT in Rydberg media is a highly non-trivial many-body problem
[11, 13, 17, 18, 19]. Here we outline our recent work on this subject, which elucidated
two regimes of field intensities: interactions of weak, single-photon pulses [11], which
can be used to implement universal photonic logic gates [20, 21]; and propagation and
attenuation of strong input fields studied in a recent prominent experiment [17], whose
theoretical treatment reveals the importance of two-photon correlations [19].

2. Interaction of weak quantum fields via Rydberg atoms

EIT can translate strong DD interactions between the Rydberg states of atoms into
sizable interactions between single photons [11], as described below.

2.1. Equations of motion

Consider an ensemble of cold alkali atoms with level configuration as in Fig. 1.
All the atoms are initially prepared in the ground state |g〉. Two distinguishable,
weak (quantum) fields E1,2 propagate in the opposite directions along the z axis and
resonantly interact with the atoms on the transitions |g〉 → |e1,2〉, respectively. The
intermediate states |e1,2〉 are resonantly coupled by two strong (classical) control fields
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Figure 1. (a) Level scheme of atoms interacting with weak (quantum) fields E1,2

on the transitions |g〉 → |e1,2〉 and strong control fields of Rabi frequencies Ω1,2

on the transitions |e1,2〉 → |r1,2〉, respectively. VDD denotes the DD interaction
between pairs of atoms in Rydberg states |r〉. (b) Upon entering the medium, each
field is converted into the corresponding polariton Ψ1,2 representing a coupled
excitation of the field and atomic coherence. These polaritons propagate in
the opposite directions with slow group velocities v1,2 and interact via the DD
interaction.
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with Rabi frequencies Ω1,2 to the highly excited Rydberg states |r1,2〉. In a static
electric field Estez, the Rydberg states |r〉 possess large permanent dipole moments
p = 3

2nqea0ez, where n and q ≡ n1 − n2 are, respectively, the (effective) principal
and parabolic quantum numbers, e is the electron charge, and a0 is the Bohr radius
[1]. A pair of atoms i and j at positions ri and rj excited to states |r〉 interact
with each other via the DD potential ~∆(ri − rj) = ~C3(1 − 3 cos2 ϑ)|ri − rj |−3,
where ϑ is the angle between vectors ez and ri − rj , and C3 ∝ ℘2

r is a constant
proportional to the product of atomic dipole moments ℘r = 〈rl|p |rl〉 ∝ n2 assumed
the same for both states |r1,2〉. In the frame rotating with the frequencies of the
optical fields, the interaction Hamiltonian H = Vaf + VDD contains the atom-field
interaction Vaf = −~

∑

l=1,2

∑N
j [gjl Êlσ̂j

elg + Ωlσ̂
j
rlel + H.c.], and the DD interaction

VDD = ~
∑N

i<j σ̂
i
rr∆(ri − rj)σ̂

j
rr, where N = ρV is the total number of atoms of

density ρ in the (quantization) volume V , σ̂j
µν ≡ |µ〉jj〈ν| is the transition operator of

the jth atom, Êl is the slowly-varying operator corresponding to the electric field El

(l = 1, 2), and gjl is the corresponding atom-field coupling constant on the transition
|g〉j → |el〉j .

We assume that the transverse profile of both weak fields El is described by
a Gaussian e−r2⊥/w2

of width w, where r⊥ = |r⊥| is the distance from the field
propagation z-axis. Then the (transverse-averaged) coupling constants are given
by gl = (℘gel/~)

√

~ω/2ǫ0V , ℘gel being the dipole matrix element on the transition
|g〉 → |el〉, V = πw2L, and L the medium length. The Rabi frequencies of strong
control fields Ωl are assumed uniform over the entire volume V . Using Hamiltonian
H , we derive the Heisenberg-Langevin equations for the atomic operators σ̂gel (r),

σ̂grl(r) and propagation equations for the quantum fields Êl(z). Solving for the

atomic operators perturbatively in the small parameters glÊl/Ωl and in the adiabatic
approximation [9, 10, 11], and after substituting into the equations for the fields, we
obtain the following propagation equations for the dark-state polaritons Ψ̂l =

√

c/vl Êl
[9],

(∂t ± vl∂z) Ψ̂l(z, t) = −i sin2 θlŜ(z, t)Ψ̂l(z, t), (1)

the sign “+” or “−” corresponding to l = 1 or 2, respectively, vl = c cos2 θl is the
group velocity of the corresponding field in the EIT medium, and the mixing angles θl
are defined through tan2 θl = g2l N/|Ωl|2. Operator Ŝ(z, t) is responsible for the self-
and cross-phase modulation between the fields,

Ŝ(z, t) =
1

L

∫ L

0

dz′∆(z − z′)
[

sin2 θ1Î1(z′, t) + sin2 θ2Î2(z′, t)
]

, (2)

where Îl ≡ Ψ̂†
l Ψ̂l = (c/vl)Ê†

l Êl are the polariton intensity (excitation number)
operators in the EIT medium, which correspond to the photon number operators
outside the medium (vl = c) [9], while the effective one-dimensional DD potential
∆(z−z′) result from ∆(r−r′) upon double integration over the transverse coordinate,

∆(z − z′) =
1

(πw2)2

∫

d2r⊥

∫

d2r′⊥e
−(r2⊥+r′2⊥)/w2

∆(r− r′)

=
C3√
2w3

[

2|ζ| −
√
π(1 + 2ζ2)eζ

2

erfc(|ζ|)
]

, ζ ≡ (z − z′)/
√
2w. (3)

As seen in Fig. 2(a), ∆(ζ) is sharply peaked around ζ = 0.
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Figure 2. (a) One-dimensional DD potential ∆(ζ) of Eq. (3) as a function of
dimensionless distance ζ, in units of C3/

√
2w3 Hz. (b) The resulting phase-shift

φ(τ) ≡ φ(vt, L− vt, t) of Eq. (6) as a function of dimensionless time τ = vt/w, in
units of C3/(vw2) rad.

It follows from Eq. (1) that the intensity operators Îl are constants of motion:
Îl(z, t) = Îl(z ∓ vlt, 0), the upper (lower) sign corresponding to l = 1 (l = 2). The
solution for the field operators then reads

Ψ̂l(z, t) = exp

[

− i sin2 θl

∫ t

0

dt′Ŝ(z ∓ vl(t− t′), t′)

]

Ψ̂l(z ∓ vlt, 0). (4)

The validity of this dissipation-free solution hinges on the following assumptions:
(i) The duration T of the pulses exceeds the inverse of the corresponding EIT
bandwidth δω = |Ωl|2/(γel

√
κlL), where γel is the transversal relaxation rate and

κl ≃ 3λ2
l /(2π)ρ is the resonant absorption coefficient on the transition |g〉 → |el〉.

With vl = 2|Ωl|2/(κlγel), this yields the condition (κlL)
−1/2 ≪ Tvl/L < 1 which

requires a medium with large optical depth κlL ≫ 1 [10]. (ii) The DD induced
frequency shifts lie within the EIT bandwidths, 〈Ŝ(z)〉 < δω, ∀ z ∈ [0, L]. (iii) The
propagation/interaction time of each pulse tout = L/vl is limited by the relaxation
rate γrl of the Rydberg state coherence via toutγrl ≪ 1.

For simplicity of notation, we set θ1,2 = θ, i.e., g21N/|Ω1|2 = g22N/|Ω2|2.

2.2. Photonic phase gate

We now employ Eq. (4) to demonstrate the quantum phase gate between two single-
photon pulses. We are concerned with the evolution of input state |Φin〉 = |11〉 |12〉
composed of two single-excitation wavepackets |1l〉 =

[

1
L

∫

dzfl(z)Ψ̂
†
l (z)

]

|0〉 whose

spatial envelopes inside the medium fl(z) = 〈0| Ψ̂l(z, 0) |1l〉 are normalized as
1
L

∫

dz|fl(z)|2 = 1. With the operator solution (4), for the (equal-time) correlation

amplitude or the “two-photon wavefunction” F12(z1, z2, t) = 〈0| Ψ̂1(z1, t)Ψ̂2(z2, t) |Φin〉
[21] we obtain

F12(z1, z2, t) = f1(z1 − vt)f2(z2 + vt) exp[iφ(z1, z2, t)], (5)
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φ(z1, z2, t) = − sin4 θ

∫ t

0

dt′∆
(

z1 − z2 − 2v(t− t′)
)

. (6)

Hence, the two polaritons counterpropagate in a shape-preserving manner with group
velocities ±v. Since ÎlΨ̂l |1l〉 = 0, the self-interaction within each pulse is absent,
while the cross-interaction between the pulses results in the phase-shift (6) shown
in Fig. 2(b). Assume that at t = 0 the first pulse is centered at z1 = 0 and the
second pulse at z2 = L, while after the interaction, tout = L/v, the coordinates of
the two pulses are z1 = L and z2 = 0, respectively. The accumulated phase-shift is

then φ(L, 0, L/v) = − sin4 θ/v
∫ L

0
dz′∆12(2z

′−L). To evaluate the integral, we replace

the variable (2z′ − L)/
√
2w → ζ′ and extend the integration limits to L/

√
2w → ∞,

obtaining a spatially uniform φ = C3/(vw
2) (sin θ ≃ 1). The state of the system at

tout is then |Φout〉 = eφ |Φin〉. Since for input states |m1〉 |n2〉 (m,n = 0, 1) there
is no phase shift when m + n < 2, the conditional two-photon phase shift φ = π is
equivalent to the cphase gate |Φout〉 = (−1)mn |m1〉 |n2〉 [20].

2.3. Experimental considerations

To relate the foregoing discussion to a realistic experiment, we assume that the
quantum fields are confined in a hollow-core waveguide of length L ∼ 1 cm with
the lowest transverse mode of width w ≃ 2µm [22]. The waveguide is filled with
N ≃ 5× 104 cold Rb atoms at density ρ ≃ 2× 1011 cm−3. For the two quantum fields
tuned to the D1 and D2 transitions |g〉 → |e1,2〉 (λ1 = 795 nm, λ2 = 780 nm), the
corresponding optical depths are κ1L ≃ 600 and κ2L ≃ 580. With γe1 ≃ 1.8×107 s−1,
γe2 ≃ 1.9×107 s−1, and taking Ω1 ≃ 7.35×106 rad/s, Ω2 ≃ 7.43×106 rad/s, the group
velocities are v1,2 = 100 m/s. The bandwidth of the pulses T−1 & v/L = 104 s−1 is
smaller than the EIT bandwidth δω ≃ 1.2×105 rad/s. To realize the cphase gate, we
choose the Rydberg states |r1,2〉 with ℘r1 = ℘r2 = 315ea0 (quantum numbers n = 15
and q = n − 1), leading to the conditional phase shift φ = π. We have verified that
the DD frequency shift is within the EIT window δω.

3. Strong field EIT with Rydberg atoms

We now consider propagation of a single (multiphoton) probe field Êp of variable
intensity through a ladder EIT medium with the VdW interactions between the atomic
Rydberg states, as shown in Fig. 3(a). This system was studied experimentally in Ref.
[17], where increasing the probe field amplitude led to reduction of its transmission
within the EIT window, which, quite surprisingly, was accompanied by negligible
broadening and indiscernible shift of the EIT line. We have developed an efficient
theoretical model for EIT with Rydberg atoms [19], whose predictions fully reproduce
the experimental observations [17], as detailed below.

3.1. Equations of motion

In the frame rotating with the frequencies of the probe ωp and control ωc fields, the
system Hamiltonian H = Ha + Vaf + VVdW now contains the unperturbed atomic
part, Ha = −~

∑N
j [∆pσ̂

j
ee + (∆p + δc)σ̂

j
rr], where ∆p = ωp − ωeg and δc = ωc − ωre

are the corresponding detunings; and the atom-field and VdW interactions, Vaf =
−~

∑N
j [Ω̂p(rj)σ̂

j
eg + Ωcσ̂

j
re + H.c.] and VVdW = ~

∑N
i<j σ̂

i
rr∆(ri − rj)σ̂

j
rr, where

Ω̂p = gÊp is the probe Rabi frequency, while ~∆(ri − rj) = ~C6|ri − rj |−6 is the VdW
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Figure 3. (a) Level scheme of atoms interacting with the probe Ωp and control Ωc

fields on the corresponding transitions with detunings ∆p and δc, respectively. Γe

and Γr are the (population) decay rates of states |e〉 and |r〉, and VVdW denotes
the VdW interaction between the atoms in the Rydberg state |r〉. (b) Truncated
level scheme of a superatom, composed of nsa atoms, with the corresponding
transition amplitudes due the probe and control fields.

potential between a pair of atoms i and j at positions ri and rj . We consider stationary
propagation of the probe field along the z axis, and assume uniform, undepleted
control field Ωc. Using Hamiltonian H , we derive Heisenberg-Langevin equations for
the field Êp(r) and atomic σ̂µν (r) operators. For moderate Rabi frequency Ωp < γe
and number density of probe photons ρphot ≪ ρ, we can assume linear response of
individual atoms to the applied field and arrive at the propagation equation for the
probe field amplitude, ∂z Êp = iκ2 α̂Êp with the polarizability

α̂(r) =
iγe

γe − i∆p + |Ωc|2[γr − i(∆2 − Ŝ(r))]−1
, (7)

where Ŝ(r) ≡
∫

d3r′ρ(r′)∆(r − r′)σ̂rr(r
′) is the total VdW induced shift of level |r〉

for an atom at position r. Since Ŝ(r) involves integration over all spatial coordinates
r′ ∈ V , Eqs. (7) is highly nonlocal. We therefore need to contrive an efficient method
to evaluate the VdW shift Ŝ(r).

The strong, long-range interactions between the Rydberg atoms suppresses
multiple Rydberg excitations within a blockade volume Vsa = 4π

3 R3
sa where Rsa ≃

6

√

C6γe/|Ωc|2 is the blockade radius [8]. We therefore call the ensemble of nsa = ρVsa

atoms “superatom” (SA) [19]. Each SA can contain only one Rydberg excitation
delocalized over Vsa. The level scheme of SA is shown in Fig. 1(b): |G〉 =
|g1, g2, . . . , gnsa

〉 is the ground state, and |R(1)〉 = 1√
nsa

∑nsa

j |g1, g2, . . . , rj , . . . , gnsa
〉

is the single collective Rydberg excitation state, while |E(k)〉 are the properly
symmetrized (Dicke) states with k atoms in |e〉. The corresponding transition
amplitudes follow from 〈E(1)|Vaf |G〉 = √

nsaΩ̂p, 〈R(1)|Vaf |E(1)〉 = Ωc, etc. We then

obtain for the SA operators Σ̂GR ≡ |G〉〈R(1)| = Ωc
√
nsaΩ̂pΣ̂GG/[(∆p+iγe)∆2−|Ωc|2]

and Σ̂RR = Σ̂RGΣ̂GR. To account for possible saturation of transition |G〉 → |R(1)〉,
we take Σ̂GG + Σ̂RR = 1, which finally yields

Σ̂RR =
|Ωc|2nsaΩ̂

†
pΩ̂p

|Ωc|2nsaΩ̂
†
pΩ̂p + [|Ωc|2 −∆p∆2]2 +∆2

2γ
2
e

. (8)
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We can now treat the medium as a collection of Nsa = ρsaV SAs at positions rj ,
which implies a spatial coarse-graining with the grain size 2Rsa [23, 24]. The total
VdW shift Ŝ(r) at position r can then be expressed as

Ŝ(r) ≈
Nsa
∑

j

∆(r− rj)Σ̂RR(rj) = ∆̄Σ̂RR(r) + ŝ(r). (9)

The physical meaning of the first term on the rhs of Eq. (9) is that an excited SA
at rj ≃ r [Σ̂RR(r) → 1] induces divergent VdW shift averaged over the SA volume:

∆̄ ≃ 1
Vsa

∫

Vsa

∆(r′)d3r′ → ∞. The last term ŝ(r) ≡ ∑Nsa

j 6=jr
∆(r− rj)Σ̂RR(rj) describes

the VdW shift induced by the external SAs outside the volume V
(r)
sa centered at r. It

can be evaluated by replacing the summation by an integration over the entire volume
V , excluding the SA at r, which, upon using the mean-field approximation, yields a
small shift 〈ŝ(r)〉 = w

8 〈Σ̂RR(r)〉.
Using Σ̂RR(r) as a projector onto the Rydberg excitation of SA at r [while

∆̄ ≫ γe], we now recast the polarizability of Eq. (7) as

α̂(r) = Σ̂RR(r)
iγe

γe − i∆p
+ [1− Σ̂RR(r)]

iγe
γe − i∆p + |Ωc|2[γr − i(∆2 − 〈ŝ(r)〉)]−1

. (10)

Here the first fraction is the polarizability αTLA of a two-level atom, which applies
when the SA at position r contains a Rydberg excitation [Σ̂RR(r) → 1], while the
second fraction, barring the small mean-field shift 〈ŝ(r)〉, is the usual EIT polarizability
αEIT [10] acting when no Rydberg excitation is present [Σ̂RR(r) → 0].

The expectation value of the probe field intensity obeys the equation

∂z〈Ê†
p(r)Êp(r)〉 = −κ〈Ê†

p(r)Im[α̂(r)]Êp(r)〉. (11)

Note that factorizing out Im[〈α̂(r)〉] in a mean-field sense would amount to neglecting
the essential two-particle quantum correlations [13] originating from nonlinear
response of the atoms to the Rydberg excitations. We therefore replace α̂(r) in Eq. (11)
by its expectation value conditioned upon the presence of photon at r, denoted by 〈·〉r,

〈α̂(r)〉r = 〈Σ̂RR(r)〉rαTLA + [1− 〈Σ̂RR(r)〉r]αEIT. (12)

The conditional Rydberg population 〈Σ̂RR〉r of the SA at r is obtained from Eq. (8)

by the replacement Ω̂†
p(r)Ω̂p(r) → 〈Ω̂†

p(r)Ω̂p(r)〉 g(2)p (r), where the probe field intensity

correlation function g
(2)
p (r) =

〈Ê†
p(r)Ê†

p(r)Êp(r)Êp(r)〉
〈Ê†

p(r)Êp(r)〉〈Ê†
p(r)Êp(r)〉

quantifies the probability of having

simultaneously at least two photons in the blockade volume V
(r)
sa . Note that linear,

e.g. bare EIT, response of the medium does not change the correlation function of the
propagating field, and only nonlinear, i.e. conditional, absorption ∝ Im[〈α̂(r)〉−αEIT]

modifies g
(2)
p , which therefore obeys the equation of motion

∂zg
(2)
p (r) = −κ〈Σ̂RR(r)〉Im[αTLA − αEIT]g

(2)
p (r). (13)

We note that our treatment involves only single transverse mode of the probe field,
which is effectively defined by the SA cross-section.

Given the input field “intensity” Ip ≡ 〈Ω̂†
pΩ̂p〉 and its correlation function g

(2)
p [for

“classical” coherent field g
(2)
p (0) = 1], we then use the following stochastic procedure to

integrate the coupled Eqs. (11)-(13) for z ∈ [0, L]: We divide the propagation distance
L into L/(2Rsa) intervals corresponding to SAs, and for z within each SA we determine
via Monte-Carlo sampling of 〈Σ̂RR(r)〉r whether the SA is excited, Σ̂RR(r) → 1, or
not, Σ̂RR(r) → 0. We then average over several independent realizations. The limit of
infinitely many such realizations corresponds to continuous polarizability of Eq. (12).
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Figure 4. Top: Probe field transmission Ip(L)/Ip(0) versus detuning ∆p, for
input intensities corresponding to Ωp(0)/2π = 0.01, 0.15, 0.5, 1.0 MHz. Thin
lines are experimental curves from [17], thicker lines are obtained via stochastic
simulations of Eqs. (11)-(13) averaged over 10 independent realizations. Bottom:

The corresponding intensity correlation functions g
(2)
p (L).

3.2. Numerical simulations and comparison with the experiment

We employ our theory to simulate the experiment of Ref. [17] with an ensemble of
cold 87Rb atoms: |g〉 ≡ 5S1/2 |F = 2,mF = 2〉, |e〉 ≡ 5P3/2 |F = 3,mF = 3〉
with Γe = 3.8 × 107 s−1, and |r〉 ≡ 60S1/2 with Γr = 5 × 103 s−1 and C6/2π =
1.4 × 1011 s−1µm6 corresponding to repulsive VdW interactions. γe,r also include
the one- and two-photon laser linewidths δω1,2/2π ≃ (5.7, 11)× 104 s−1. The atomic
density ρ = 1.2× 107 mm−3 and the medium length L = 1.3mm lead to the resonant
optical depth of κL = 4.524. The control field Ωc/2π = 2.25 × 106 s−1‡ is slightly
detuned by δc/2π = −105 s−1. The corresponding blockade radius is Rsa ≃ 6.6 µm
and each SA contains on average n̄sa ≃ 14.7 atoms.

In Fig. 4 we compare the transmission spectra for different input probe intensities
with the corresponding plots of Ref. [17]. The weak field of Ωp/2π . 0.01MHz leads
to linear EIT response of the medium; the VdW interaction induced nonlinearities
become important only at higher intensities. The agreement between our stochastic
simulations and the experiment is remarkable. We also show the local intensity

correlation g
(2)
p (L) at the exit from the medium.

Figure 5 summarizes the results of our simulations involving the continuous
polarizability of Eq. (12). Increasing the input probe intensity leads to lesser
transmission through the EIT window (∆2 ∼ 0) and to small mean-field shift and
broadening of the EIT line. This is due to the higher probability of two or more
photons, exciting Rydberg states |r〉, to be at the same SA. The induced large
VdW level shift ∆̄(0) results in strong photon absorption, simultaneously reducing
the photon coincidence probability within the SA volume Vsa. Hence, both Ip(z)

and g
(2)
p (z) decay, but once g

(2)
p (z) ≪ 1, the attenuation of the probe field intensity

Ip(z) slows down. Eventually Ip saturates at a value corresponding to less than one
photon per SA, ρphot . ρsa, with vanishing coincidence probability. With ρphot =
~ǫ0cIp/(2℘

2
geωpv), where the probe group velocity v = 2|Ωc|2/(κγe) (≃ 6000 m/s),

‡ Our definition of the Rabi frequencies Ωp,c differ from that in [17] by a factor of 1
2
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Figure 5. (a) Transmission (top) and intensity correlation (bottom) spectra
of the probe field, for various input intensities. (b) The same, but setting

g
(2)
p (z) = 1∀ z ∈ [0, L]. (c) Peak probe transmission Tmax around the EIT

line center, (d) EIT linewidth δωEIT (FWHM), and (e) detuning ∆max
p

at the
maximum Tmax, versus the input probe Rabi frequency Ωp(0). The black lines
(circles) correspond to case (a) and the brown lines (squares) to (b). ∆p, δωEIT,Ωp

are in MHz.

we have that ρphot = (ρ/4)〈Ω̂†
pΩ̂p〉/|Ωc|2 and the maximal saturation intensity is

〈Ω̂†
pΩ̂p〉 ≃ (4ρsa/ρ)|Ωc|2. In the medium the photons are anticorrelated (antibunched)

within the temporal window of δt ≃ 2Rsa/v (≃ 1.6 ns), which does not change when
they leave the medium for free space.

Had we not taken into account the probe field intensity correlation, equivalent to

setting g
(2)
p (z) = 1 ∀ z ∈ [0, L], Fig. 5(b), we would have faster, exponential decay of

Ip(z), unrestrained by the buildup of avoided volume between the photons, as well as
sizable shift and broadening of the EIT line, which contradict the observations of [17].

Outside the EIT window, around the Autler-Townes doublet ∆2 ∼ ±Ωc, the
probe is strongly absorbed, Im[〈α〉] ≃ 1, but the correlation function is amplified,
since in Eq. (13) Im[αTLA − αEIT] < 0. In other words, linear absorption is larger
than the conditional absorption, which results in photon bunching but very low flux.

4. Conclusions

Electromagnetically induced transparency in a medium of strongly interacting
Rydberg atoms offers novel, highly non-linear regimes of field propagation. At the
low-light level, the induced giant cross-phase modulation enables the realization of
universal phase gate between single photon pulses. For stronger input fields, EIT
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via atomic Rydberg states is suppressed by collective excitations of SAs, which
depend on the local probe field intensity and its two-particle correlation within the
SA (blockade) volume. The buildup of anticorrelations between the photons upon
propagation through the medium leads to the saturation of transmitted field intensity
to a value corresponding to one photon per blockade volume. The transmitted field
then corresponds to a train of non-overlapping single-photon pulses with the temporal
separation δt of a few ns.
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