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We study the giant Kerr nonlinear interaction between two ultraweak optical fields in which the cross-phase-
modulation is not accompanied by spectral broadening of the interacting pulses. This regime is realizable in
atomic vapors, when a weak probe pulse, upon propagating through the electromagnetically induced transpar-
encysEITd medium, interacts with a signal pulse that is dynamically trapped in a photonic band gap created by
spatially periodic modulation of its EIT resonance. We find that large conditional phase shifts and entanglement
between the signal and probe fields can be obtained with this scheme. The attainablep phase shift, accompa-
nied by negligible absorption and quantum noise, is shown to allow a high-fidelity realization of the controlled-
phase universal logic gate between two single-photon pulses.
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I. INTRODUCTION

The field of quantum informationsQId is attracting enor-
mous interest, in view of its fundamental nature and its po-
tentially revolutionary applications in cryptography, telepor-
tation, and computingf1g. QI processing schemes rely on the
ability to “engineer” and maintain the entanglement of
coupled systems. Among the various QI processing schemes
of current interestf2–7g, those based on photonsf6,7g have
the advantage of using very robust and versatile carriers of
QI. Yet the main impediment toward their operation at the
few-photon level is the weakness of photon-photon interac-
tion soptical nonlinearitiesd in conventional mediaf8g. One
way to circumvent these difficulties is to use linear optical
elements, such as beam splitters and phase shifters, in con-
junction with single-photon sources and detectors, to achieve
probabilistic photon-photon entanglement, conditioned on
the successful outcome of a measurement performed on aux-
iliary photonsf7g.

A promising avenue fordeterministically, rather than
probabilistically, entangling single photons has been opened
up by studies of giantly enhanced nonlinear coupling in the
regime of electromagnetically induced transparencysEITd in
atomic vaporsf9,10g. EIT relies on the classical driving
fields to induce coherence between atomic levels and trans-
form the field into an atom-dressed polariton propagating in
the medium with controllable, arbitrarily small group veloc-
ity f11,12g. These studies have predicted the ability to
achieve an appreciableconditionalphase shift, impressed by
one weak field upon anotherf13g, or a two-photon switch
f14g, using the driven N-shaped configuration of atomic lev-
els. One drawback of these schemes has been the mismatch
between the group velocities of the probe pulse moving as a
slow EIT polariton and the nearly free propagating signal
pulse, which severely limits their effective interaction length

and the maximal conditional phase shiftf15g. This drawback
may be remedied by using an equal mixture of two isotopic
species, interacting with two driving fields and an appropri-
ate magnetic field, which would render the group velocities
of the two weak pulses equalf16g. Alternative schemes to
achieve the group velocity matching and strong nonlinear
interaction between the pulses employ a single species of
multilevel atoms that couple to both fields in asymmetric
fashionf17,18g.

Notwithstanding its highly promising advantages, deter-
ministic EIT-polariton entanglement faces other serious dif-
ficulties. Small group velocities that correspond to long in-
teraction times, and thus large conditional phase shifts, in a
medium of finite lengthstypically of a few centimetersd
f16–18g impose limitations on the photonic component of the
signal polariton, whose magnitude determines the condi-
tional phase shift. Copropagating pulses pose yet another dif-
ficulty: since the conditional phase shift of each pulse is
proportional to the local intensity of the other pulse, different
parts of the interacting pulses acquire different phase shifts,
which causes their frequency chirp and spectral broadening.

As we show here, the foregoing difficulties may be over-
come via controlled modification of the photonic density of
states in gaseous EIT media, by modulating their refractive
index with an off-resonant standing light wavef19g. By
properly tuning the resulting photonic band structure, a
propagating signal pulse can be converted into a standing-
wave polaritonic excitation inside the photonic band gap
sPBGd. The trapped signal polariton, having an appreciable
photonic component, can impress a large,spatially uniform
phase shift upon the propagating probe, at the single-photon
level. The advantageous features of the present scheme pave
the way for possible QI applications based on deterministic
photon-photon entanglement, without the limitations associ-
ated with traveling-wave configurationsf15g and without in-
voking cavity QED techniquesf20g.

In Sec. II we formulate the basic theory underlying our
scheme and give an analytical solution of the equations of
motion for the two interacting quantum fields. In Sec. III we*Email address: dap@iesl.forth.gr
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study the cross-phase-modulation between the fields while in
Sec. IV we discuss an explicit realization of a deterministic
controlled-phasesCPHASEd logic gate between two single-
photon pulses representing qubits. Our conclusions are sum-
marized in Sec. V.

II. EQUATIONS OF MOTION

We consider a cold atomic medium containing two spe-
cies of atomsA and B, with N-shaped level configurations
fFig. 1sadg. Atoms A andB correspond to two isotopic spe-
cies of trapped alkali-metal atoms subject to an appropriate
magnetic field that shifts the Zeeman sublevels and tunes the
relevant atomic transitions outlined below. All the atoms are
assumed to be optically pumped to the ground statesublA,B.
Atoms A and B resonantly interact with two running-wave
classical fields driving the atomic transitionsuclA,B→ ualA,B

with the Rabi frequenciesVd
sA,Bd, respectively. In the absence

of levels udlA,B, this situation corresponds to the usual EIT
for the weaksquantumd signalE and probeEp fields which
are acting on the transitionsublA,B→ ualA,B: In the vicinity of
a frequency corresponding to the two-photon Raman reso-
nancesublA,B→ uclA,B, the medium becomes transparent for
both weak fieldsf9–11g. This transparency is accompanied
by a steep variation of the refractive index. AtomsA, in
addition, dispersively interact with a standing-wave classical
field having the Rabi frequencyVsszd=2Vscosskszd and de-
tuning D@Vs from the atomic transitionuclA→ udlA. This
field induces a spatially periodic ac Stark shift of leveluclA
that results in a spatial modulation of the index of refraction
for the signal field according tof19g

dn =
c

vs

4Ds

vab
cos2skszd,

whereDs=Vs
2/D is the amplitude of the Stark shift,c/vs is

the ratio of the speed of light in vacuum to the group velocity

in the medium,vs~ uVd
sAdu2, andvmn is the frequency of the

atomic resonanceuml↔ unl. When the modulation depth is
sufficiently large, the forward propagating signal fieldE+
with a carrier wave vectork nearks=ws/c undergoes Bragg
scattering into the backward propagating fieldE− with the
wave vector −k. This scattering of counterpropagating fields
into each other forms a standing-wave pattern and modifies
the photonic density of states such that a range of frequencies
appears in which light propagation is forbidden—a PBG
f19g. Both componentsE± of the signal field dispersively
interact with atomsB via the transitionuclB→ udlB with the
detuningDB. Thus atoms of speciesB simultaneously pro-
vide EIT for the slowly propagating probe fieldEp and its
cross coupling with the signal fieldE± f13,15,16g.

We assume that initially the signal pulse of durationTs
enters the EIT medium, where, in the absence of the
standing-wave fieldVs=0, it is slowed down and spatially
compressed, by a factor ofvs

0/c!1, to the lengthzloc
.vs

0Ts. Once the signal pulse has been fully accommodated
in the medium of lengthL, which requires thatzloc,L, it is
converted into a standing-wave polaritonic excitation accord-
ing to the procedure described inf19g. To this end, the driv-
ing field Vd,0

sAd, corresponding to the input group velocityvs
0

~ uVd,0
sAdu2, is adiabatically switched off and the pulse is halted

in the medium. Next the standing-wave fieldVs is switched
on, thereby establishing the PBG, and finally the driving field
is switched back on to a valueVd

sAd.Vd,0
sAd, releasing the sig-

nal pulse into the PBG. The amplitude of the photonic com-
ponent of the signal pulse, which is responsible for the cross-
phase modulation, is now larger than that at the input by a
factor of Îvs/vs

0=Vd
sAd /Vd,0

sAd f12g. Then, upon propagating
through the medium with the group velocityvp, the probe
pulse interacts with both forward and backward components
of the signal over its localization lengthzloc fFig. 1sbdg. For a
large enough product of the signal field intensityuE±u2 and
interaction timeL /vp, both pulses accumulate uniform con-
ditional phase shifts which can exceedp. Finally, the signal
pulse is released from the medium by reversing the sequence
that resulted in its trapping.

Let us now consider the scheme more quantitatively. To
describe the quantum properties of the medium, we use col-
lective slowly varying atomic operators ŝmn

sid sz,td
=s1/Ni

zdo j=1
Ni

z

um jliikn jue−ivmn
sid

t, averaged over small but macro-
scopic volume containing many atoms of speciesi=A,B
around positionz f11g: NA,B

z =sNA,B/Lddz@1, whereNA,B is
the total number of the corresponding atoms. The quantum
radiation is described by the traveling-wavesmultimoded
electric field operatorsÊ±sz,td=oqa±

qstde±iqz and Êpsz,td
=oqap

qstdeiqz, where aj
q is the annihilation operator for the

field mode with the wave vectorkj +q,kj being the carrier
wave vector of the corresponding field. These single-mode
operators possess the standard bosonic commutation rela-

tions fai
q,aj

q8†
g=di jdqq8, which yield fÊiszd , Ê j

†sz8dg=Ldi jdsz
−z8d. In a frame rotating with the frequencies of the optical
fields, the interaction Hamiltonian has the following form:

FIG. 1. sColor onlined sad Atomic level scheme involving two
species of atomsA andB, aimed at trapping the signal fieldE± in a
PBG and its cross coupling with the slowly propagating probe field
Ep. sbd Probe pulse propagation and interaction with the trapped
signal pulse.
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H =
"NA

L
E dzhDŝdd

sAd − gAfÊ+eikz + Ê−e−ikzgŝab
sAd

− Vd
sAdeikd

sAdzŝac
sAd − 2Vscosskszdŝdc

sAdj +
"NB

L
E dzhDBŝdd

sBd

− gpÊpe
ikpzŝab

sBd − Vd
sBdeikd

sBdzŝac
sBd − gBfÊ+eikz + Ê−e−ikzgŝdc

sBdj

+ H.c., s1d

where gA=`ab
sAdÎvab

sAd / s2"e0SLd, gp=`ab
sBdÎvab

sBd / s2"e0SLd,
andgB=`dc

sBdÎvdc
sBd / s2"e0SLd are the atom-field coupling con-

stants,̀ mn
sid being the corresponding atomic dipole matrix el-

ement andS the cross-sectional area of the quantum fields.
To facilitate the analysis, we decompose the induced atomic
coherences as

ŝba
sAd = ŝba

+sAdeikz + ŝba
−sAde−ikz,

ŝbc
sAd = ŝbc

+sAdeisk−kddz + ŝbc
−sAde−isk+kddz,

ŝcd
sBd = ŝcd

+sBdeikz + ŝcd
−sBde−ikz,

and make the transformations

ŝba
sBd → ŝba

sBdeikpz, ŝbc
sBd → ŝbc

sBdeiskp−kddz.

Using the slowly varying envelope approximation, we have
the following equations of motion for the weak quantum
fields:

S ]

]t
+ c

]

]z
DÊpsz,td = igpNBŝba

sBd, s2ad

S ]

]t
± c

]

]z
DÊ±sz,td = igANAŝba

±sAd + igBNBŝcd
±sBd. s2bd

The evolution of the atomic operators is governed by the
Heisenberg-Langevin equationsf10g, which are treated per-

turbatively in the small parametersgÊ /Vd and in the adia-
batic approximation for all the fieldsf11g,

ŝba
±sAd = −

i

Vd
sAdFS ]

]t
+ gA − 2iDsDŝbc

±sAd − iDsŝbc
7sAde±2idkzG

+
i

Vd
sAd F̂bc

±sAd, s3ad

ŝbc
±sAd = −

gAÊ±

Vd
sAd − i

F̂ba
±sAd

Vd
sAd , s3bd

ŝba
sBd = −

i

Vd
sBdFS ]

]t
+ gBDŝbc

sBd − i
gB

2sÊ+
†Ê+ + Ê−

†Ê−d
DB

ŝbc
sBdG

+
i

Vd
sBd F̂bc

sBd, s3cd

ŝbc
sBd = −

gpÊp

Vd
sBd + i

F̂ba
sBd

Vd
sBd , s3dd

ŝcd
±sBd =

gBÊ±

DB
ŝcc

sBd =
gB

DB

gp
2sÊp

†Êpd

uVd
sBdu2

Ê±, s3ed

wheredk=ks−k is the phase mismatch,gA=gbc
sAd+gd

sAdDs/D

andgB=gbc
sBd are the Raman coherence relaxation rates,gd

sid is
the spontaneous decay rate of stateudli, and Fmn

sid are
d-correlated Langevin noise operators associated with the re-
laxation.

To solve the coupled set of Eqs.s2ad, s2bd, ands3ad–s3ed,
we introduce new quantum fieldsĈp andĈ± sdark-state po-
laritons f11gd via the canonical transformations

Ĉp = cosuBÊp − sinuB
ÎNBŝbc

sBd, s4ad

Ĉ± = cosuAÊ± − sinuA
ÎNAŝbc

±sAd, s4bd

where the mixing anglesuA,B are defined as tanuA,B

=gA,p
ÎNA,B/Vd

sA,Bd. It follows from Eqs.s3bd and s3dd that

Ĉp =
Êp

cosuB
= −

ÎNBŝbc
sBd

sinuB
,

Ĉ± =
Ê±

cosuA
= −

ÎNAŝbc
±sAd

sinuA
,

i.e., inside the medium the photonic component of each po-
lariton is proportional to cosui while the atomic component
to sinui of the corresponding mixing angleui. From Eqs.
s2ad, s2bd, ands3ad–s3ed, the equations of motion for polari-
tons are then obtained as

S ]

]t
+ vp

]

]z
DĈp = − kpĈp + ihÎ sĈp + F̂p, s5ad

S ]

]t
± vs

]

]z
DĈ± = − ksĈ± + ihÎ pĈ± + ibĈ7 + F̂s, s5bd

wherevp=c cos2uB andvs=c cos2uA are the group velocities,

Î p;Ĉp
†Ĉp and Î s;Ĉ+

†Ĉ++Ĉ−
†Ĉ− the intensitysexcitation-

numberd operators for the probe and signal polaritons, re-

spectively,ks,p=gA,Bsin2uA,B the absorption rates,F̂s,p the as-
sociated d-correlated noise operators, h
=cos2uAsin2uBgB

2 /DB the cross-phase-modulation rate be-
tween the polaritons, andb=Dssin2uA the coupling rate of
the forward and backward propagating components of the
signal polariton. In Eq.s5bd, the linear phase modulation has
been absorbed in the signal polariton via the unitary trans-

formation Ĉ±→Ĉ±e2ibt, and we have assumed that the ef-
fective phase matching condition 2dkz!1 remains satisfied
for 0øzøL f19g. We have also assumed that the cross ab-
sorption is negligible, which requires thatDB@gd

sBd f13,14g.
Then the cross-phase-modulationh is purely real and is pro-
portional to the intensity of the photonic component of the

signal polariton, cos2uA= Ê±
†Ê± / sĈ±

†Ĉ±d, multiplied by the in-
tensity of the atomic component of the probe polariton,

sin2uB=NBŝcc
sBd / sĈp

†Ĉpd.
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Equationss5ad and s5bd are similar to the corresponding
equations derived for the case of cross-phase-modulation in a
doped photonic crystalf21g. Their general analytical solution
for arbitrary initial and boundary conditions of the traveling-

wave quantized fieldsĈp,± is not known. However, when the
absorption is small enough to be neglectedssee belowd, for a
given time and space dependence of the signal-polariton in-

tensity Î ssz,td, the solution for the probe is

Ĉpsz,td = Ĉps0,tdexpFi
h

vp
E

0

z

Îssz8,t + z8/vpddz8G , s6d

where t= t−z/vp is the retarded time. An analytic solution
for the two counterpropagating components of the signal po-
lariton can be obtained only in the case when the spatial
dependence of the probe-polariton intensity can be neglected

on the scale ofzloc, Î psz,td. Î pstd. This requires thatvpTp

.zloc, whereTp is the duration of the probe pulse. Alterna-
tively, the spectral width of the probedvp,Tp

−1 should sat-
isfy dvp,vp/zloc. Then Eq.s5bd can be solved using the
Fourier transform techniquef19g. The solution for the

polariton-mode operatorsĉ±
qstd=edz e7iqzĈ±sz,td is given by

ĉ+
qstd = ĉ+

qs0deif̂sstdFcossxtd − i
qvg

x
sinsxtdG , s7ad

ĉ−
qstd = iĉ+

−qs0deif̂sstd
b

x
sinsxtd, s7bd

wherex=Îq2vs
2+b2. Note that all the spatial modesĉ±

q of
the signal polariton acquire the sameq-independent phase

shift f̂sstd=he0
t Î pst8ddt8, with Î pstd=Ĉp

†s0,tdĈps0,td. It fol-
lows from Eqs.s7ad and s7bd that a signal pulse containing
only the modes withuqu!b /vg will be strongly trapped in-
side the medium, its wave packet periodically cycling be-
tween the forward and backward components while interact-
ing with the probe polariton. We then obtain

Ĉ+sz,td = Ĉ+sz,0deif̂sstdcossbtd, s8ad

Ĉ−sz,td = iĈ+sz,0deif̂sstdsinsbtd, s8bd

Ĉpsz,td = Ĉps0,tdeif̂pszd, s8cd

where f̂pszd=sh /vpde0
zÎssz8ddz8, with Î sszd

=Ĉ+
†sz,0dĈ+sz,0d, is the probe phase-shift operator.

Equationss8ad–s8cd are our central result. Let us dwell
upon the approximations involved in the derivation of this
solution. During the conversion of the signal pulse into a
standing-wave polaritonic excitation inside the PBG, the
nonadiabatic corrections resulting in its dissipation are neg-
ligible provided the medium is optically thickf11g,

gA
2NAzloc

cga
sAd . §ArAL @ 1,

where §A=`ab
sAd2vab

sAd / s2"e0cga
sAdd is the resonant absorption

cross section for the transitionublA→ ualA and rA=NA/ sSLd

is the density of atomsA. Due to nonzero values ofq, the
trapped signal pulse spreads and eventually leaks out of the
medium at a rate

kl .
q2vs

2

pb
, 0 ø uqu , b/vs.

We can estimate the bandwidth of the signal pulse from its
spatial extent asdq,vs/ scLd, uVd

sAdu2/ sga
sAdcd, thus obtain-

ing the upper limit for the leakage rate

kl ø
vs

4

pc2bL2 . s9d

Hence, the interaction timetint=L /vp is limited by tint
3maxhks,kp,klj!1. The corresponding fidelity of the
cross-phase modulation is given by

F = expf− sks + kp + kldL/vpg. s10d

Thus, to minimize the standing-wave field-induced absorp-
tion of the signal polariton, due to the enhanced relaxation of
Raman coherencegA and index modulation exceeding the
transparency window, the ac Stark shift should be limited by

Ds ,
gbc

sAdD

gd
sAd ,

uVd
sAdu2

ga
sAd . s11d

At the same time, the bandwidth of the probe is limited by
the length of the mediumf22g,

dvp ,
uVd

sBdu2

Îgp
2NBga

sBdL/c
=

uVd
sBdu2kp

ga
sBdÎs3p/2drBL

, s12d

whererB=NB/ sSLd is the density of atomsB.
Under these conditions, as can be deduced from Eqs.s5ad,

s5bd, and s8ad–s8cd, the time evolution of the system is de-
scribed by the effective interaction Hamiltonian

Heff = −
"

L
E dzfhĈp

†ĈpsĈ+
†Ĉ+ + Ĉ−

†Ĉ−d

+ bsĈ+
†Ĉ− + Ĉ−

†Ĉ+dg. s13d

Its first term is responsible for the cross-phase-modulation
between the probe and signal polaritons, while the second
term describes the scattering between the forward and back-
ward components of the signal polariton into each other.
Since the probe polariton propagates with the group velocity
vp, the implicit time dependence of the effective Hamiltonian

s13d is contained in the probe polariton operators asĈp

=Ĉpsz−zd, wherez=vpt. Employing the plane-wave decom-
position of the polariton operators

Ĉpszd = o
q

ĉp
qeiqz, s14ad

Ĉ±szd = o
q

ĉ±
qe±iqz, s14bd

where the mode operatorsĉi
q obey, to a good approximation

f11g, the bosonic commutation relationsfĉi
q,ĉ j

q8†g.di jdqq8,
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we have fĈiszd ,Ĉ j
†sz8dg.Ldi jdsz−z8d. It is then easy to

show that the first and second terms of the effective Hamil-
tonian s13d commute.

III. CROSS-PHASE-MODULATION

In this section we study the nonlinear interaction between
the signal and probe polaritons by exploring the classical as
well as fully quantum treatments of the system.

A. Classical fields

We begin with the classical limit of the theory, in which

the operatorsĈp,± and Î p,s are replaced by the corresponding
c numbers. Let us consider two single-photon pulses, which,
upon entering the medium, are converted into two polaritons,
each containing a single excitation,

1

L
E Isdz=

vp

L
E Ipdt . 1. s15d

Then the conditional phase shifts, accumulated by the probe
and signal pulses during the interaction, are given by

fp = fs =
hL

vp
=

gB
2L cos2uAtan2uB

cDB
; f. s16d

We note again that the phase shift is proportional to the in-
tensity of the photonic component of the signal polariton, as
attested by the presence of the cos2uA term in the numerator
of Eq. s16d.

Expressing the atom-field coupling constantsg through
the decay rateg of the corresponding excited state as

g =
3pcg

2k2SL
,

and assuming thatga
sAd.ga

sBd and gA
2NA@ uVd

sAdu2 svs!cd,
from Eq. s16d we have

f .
3pgduVd

sAdu2rB

2kp
2DBuVd

sBdu2SrA

. s17d

For realistic experimental parameters, relevant to a cold
atomic gassT&1 mKd with L.1 cm, rA,B.1012 cm−3, S
.10−8 cm2, vp,s.331015 rad/s, Vd

sAd.53108 rad/s,
Vd

sBd.23107 rad/s,DB.Ds.108 rad/s,ga,d.107 s−1, and
gbc.103 s−1, we obtainf.p with the fidelityFù0.98, the

main limiting factor being the collisional relaxation of Ra-
man coherence. In Fig. 2 we show the results of our numeri-
cal simulations of the probe polariton propagation and inter-
action with the trapped signal polariton. One can see in Fig.
2sad that the trapped signal polariton slowly spreads with the
rate kl and simultaneously undergoes rapid spatiotemporal
oscillations, whose period is determined by the reflection rate
Tosc=p /b, while the spatial amplitude is given by the pen-
etration depthpvs/ s2bd=pc/ s2Dstan2uAd which is much
smaller than its spatial extentzloc. The resulting phase shifts
of the probe and signal pulses are shown in Fig. 2sbd.

B. Quantum fields: The evolution operator

We now turn to the fully quantum treatment of the system.
Given an input state of the probe and signal polaritonsuFinl,
the state of the system subject to the effective interaction
HamiltonianHeff evolves according to

uFstdl = UstduFinl, s18d

where the evolution operatorUstd is defined via

Ustd = expS−
i

"
E

0

t

Heffdt8D . s19d

We are interested in the output state of the system at time
tout.L /vp, when the probe pulse has left the active medium.
Since the first term of Hamiltonians13d, which is responsible
for the cross-phase-modulation between the probe and signal
polaritons, commutes with the second term, which describes
the scattering between the forward and backward compo-
nents of the signal polariton, the evolution operators19d can
be factorized into the product of two commuting operators
UI and UII , corresponding to the respective terms of the
Hamiltonian,

Uout = UIUII . s20d

Using the plane-wave decompositions for the polariton op-
erators, Eqs.s14ad and s14bd, and recalling that in Eq.s13d
Ĉp=Ĉpsz−zd with z=vpt, we have

UI = p
qp

expFifĉp
qp†ĉp

qpo
q

sĉ+
q†ĉ+

q + ĉ−
q†ĉ−

qdG , s21ad

UII = p
q

expfibtoutsĉ+
q†ĉ−

−q + ĉ−
−q†ĉ+

qdg. s21bd

Note thatUI does not contain time explicitly, because for
tout.L /vp the cross-phase-modulation is over, as the probe

FIG. 2. sColor onlined sad Probe-polariton
propagation and interaction with the trapped sig-
nal polariton. sbd Probe ssignald phase shift
fpszd;fpsz,tmax+z/vpd ffsstd;fssz,tdg as a
function of zftg.
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pulse has already left the medium. However, the interaction
time L /vp is contained implicitly inf=hsL /vpd. Below we
will employ the evolution operator of Eqs.s20d, s21ad, and
s21bd to calculate the output state of the system for the
single-photon and coherent input states.

C. Single-photon states

Consider first the evolution of two single-photon input
pulses, which in the medium correspond to the initial state

uFinl = u1pl ^ u1+l ^ u0−l, s22d

consisting of two single-excitation polariton wave packets

u1pl = o
qp

jp
qpu1p

qpl, u1+l = o
q

j+
qu1+

ql,

where u1p
qpl=ĉp

qp†u0l and u1+
ql=ĉ+

q†u0l. The Fourier ampli-
tudesjp,+

q , normalized asoqujp,+
q u2=1, define the spatial en-

velopes fp,+szd=oqjp,+
q eiqz of the probe and forward signal

pulses that initiallysat t=0d are localized aroundz=0 and
z=L /2, respectivelyfsee Fig. 2sadg. After the interaction, at
time tout.L /vp, the output state of the system is found to be

uFoutl = UoutuFinl = eifu1pl ^ fcossbtoutdu1+l ^ u0−l

+ i sinsbtoutdu0+l ^ u1−lg, s23d

where u1−l;oqj+
qu1−

−ql with u1−
−ql=ĉ−

−q†u0l. Thus, while the
signal pulse periodically cycles between the forward and
backward modes, the combined state of the system acquires
an overall conditional phase shiftf=hL /vp. Whenf=p and
tout is such thatbtout=2pn sn being any integerd, the output
state of the two photons is given by

uFoutl = − uFinl, s24d

which can be used to realize a deterministic controlled-phase
sCPHASEd logic gate between the two photons representing
qubits, as described in Sec. IV.

D. Multimode coherent states

Consider finally the evolution of input wave packets com-
posed of the multimode coherent states

uapl = p
qp

uap
qpl, ua+l = p

q

ua+
ql, u0−l = p

q

u0−
ql. s25d

The statesuapl and ua+l are the eigenstates of the input op-

eratorsĈps0,td and Ĉ+sz,0d with the corresponding eigen-
values

apstd = o
qp

ap
qpe−iqpct, a+szd = o

q

a+
qeiqz. s26d

From the operator solutionss8d, the expectation values for
the polariton operators are then obtained as

kĈpsz,tdl = apstdexpFeif − 1

L
E

0

z

ua+sz8du2dz8G , s27ad

kĈ±sz,tdl = a+szdexpFeifvp/c − 1

L
cE

0

t

uapst8du2dt8G
3 F cossbtd

i sinsbtd G , s27bd

wheref is given in Eq.s16d. These equations are notably
different from those obtained for single-modef23g and mul-
timode copropagating fieldsf16,18g because all parts of the
probe pulse interact with the whole signal pulsesand the
other way aroundd, which is reflected in the spacestimed
integration. Similarly to the cases discussed in Refs.
f16,18,23g, only in the limit f!1 do Eqs.s27ad and s27bd
reproduce the classical result,

fp =
f

L
E ua+u2dz8 =

h

vp
E Issz8ddz8, s28ad

fs =
fvp

L
E uapu2dt8 = hE

0

t

Ipst8ddt8, s28bd

whereby a phase shift ofp can be obtained when

1

vp
E ua+u2dz8 =E uapu2dt8 =

p

h
.

This restriction on the classical correspondence of the coher-
ent states comes about since, for large enough cross-phase-
modulation ratesh, these states exhibit periodic collapses
and revivals asf andfvp/c change from 0 to 2p. This fact
severely limits the usefulness of weak coherent states for QI
applications based on the polarization degrees of freedom of
optical fields.

Let us also calculate the time evolution of the input state

uFinl = uapl ^ ua+l ^ u0−l. s29d

Using Eqs.s20d, s21ad, ands21bd, and the fact that

expfibtsa†b + b†adgunalu0bl

= o
k=0

n Sn

k
D1/2

fcossbtdgn−kfi sinsbtdgkusn − kdalukbl, s30d

wherea†,a andb†,b are the bosonic creation and annihila-
tion operators for the corresponding field modesf24g, we
obtain a rather cumbersome, but nevertheless useful result,

uFoutl = UoutuFinl

= p
qp

e−uap
qpu2/2 o

m1,m2,…,ml

sap
qp

1

dm1sap
qp

2

dm2
¯ sap

qp
l

dml

Îm1 ! m2 ! ¯ ml!

3usm1dp
qp

1

lusm2dp
qp

2

l ¯ usmldp
qp

l

l ^ p
q

e−ua+
qu2/2

3o
n

fa+
qeifsm1+m2+¯+mldgn

3o
k=0

n
fcossbtoutdgn−kfi sinsbtoutdgk

Îk ! sn − kd!
usn − kd+

qluk−
−ql.

s31d
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For f=p, one haseifsm1+m2+¯+mld= ±1, the “+1” or “−1”
corresponding to the sumsm1+m2+¯ +mld being, respec-
tively, even or odd. Accordingly, Eq.s31d simplifies to

uFoutl =
1

2
suapl + u− apld ^ p

q

e−ua+
qu2/2o

n

sa+
qdn

3o
k=0

n
fcossbtoutdgn−kfi sinsbtoutdgk

Îk ! sn − kd!
usn − kd+

qluk−
−ql

+
1

2
suapl − u− apld ^ p

q

e−ua+
qu2/2o

n

s− a+
qdn

3o
k=0

n
fcossbtoutdgn−kfi sinsbtoutdgk

Îk ! sn − kd!
usn − kd+

qluk−
−ql,

s32d

whereu−apl=pqp
u−ap

qpl. A particularly simple and important
case is realized forbtout=sp /2dn sn being any integerd, when
either sinsbtoutd or cossbtoutd is zero and the signal polariton
is found in one of the four possible statesua+l ^ u0−l , u−a+l
^ u0−l , u0+l ^ uia−l, and u0+l ^ u−ia−l. As an example, when
btout=2pn, we have

uFoutl =
1

2
suapl + u− apld ^ ua+l ^ u0−l

+
1

2
suapl − u− apld ^ u− a+l ^ u0−l, s33d

which is an entangled coherent superposition of macroscopi-
cally distinguishable states of two fields. Such entanglement
of coherent Schrödinger-cat statesf25g can find important
applications in schemes of quantum-information processing
and communication with continuous variablesf26g. Thus, us-
ing our scheme, one could contemplate the feasibility of de-
terministic quantum computation with optical coherent states
f27g.

IV. DETERMINISTIC LOGIC GATE

Utilizing the scheme of Fig. 3 and the results of Sec.
III C, one can realize a transformation corresponding to the

CPHASE logic gate between two traveling single-photon
pulses representing qubits. To this end, suppose that the qubit
basis stateshu0l , u1lj are represented by the verticaluVl
;u0l and horizontaluHl;u1l polarization states of the pho-
ton. After passing through a polarizing beam splittersPBSd,
the vertically polarized component of each photon is not re-
flected, while the horizontally polarized component is di-
rected into the active medium. Employing the procedure dis-
cussed above, whereby theuHsl component of the signal
pulse is first trapped in the medium, then interacts with the
uHpl component of the probe, and finally is released, the
two-photon stateuFinl= uHpHsl acquires the conditional
phase shiftp, as per Eq.s24d. At the output, each photon is
recombined with its vertically polarized component on an-
other PBS, where the complete temporal overlap of the ver-
tically and horizontally polarized components of each photon
is achieved by delaying theuVl wave packet in a fiber loop or
sending it though another EIT vapor cell. The resulting trans-
formation corresponds to the truth table of theCPHASEgate,

uVpVsl → uVpVsl,

uVpHsl → uVpHsl,

uHpVsl → uHpVsl,

uHpHsl → − uHpHsl. s34d

Together with the Faraday rotations of photon polarization
simplementing arbitrary single-qubit rotationsd and linear
phase shift, theCPHASEgate isuniversalas it can realize any
unitary transformationf1g.

V. CONCLUSIONS

In this paper we have proposed a scheme for highly effi-
cient Kerr nonlinear interaction between two weak optical
fields. We have shown that large conditional phase shifts and
entanglement can be obtained in atomic vapors, in which a
weak squantumd probe pulse, upon propagating through the
medium, interacts with a weak signal pulse that is dynami-
cally trapped in a photonic band gap created by spatially
periodic modulation of the electromagnetically-induced-
transparency resonance. The attainablep phase shift accom-
panied by negligible absorption and spectral broadening can
be used for high-fidelity implementation of theCPHASEuni-
versal quantum logic gate between the two single-photon
pulses. The proposed scheme may therefore pave the way to
quantum-information applications, such as deterministic all-
optical quantum computation, dense coding, and teleporta-
tion f1g.

Before closing, we note that our central equationss5ad,
s5bd, and s8ad–s8cd and consequently the main results Eqs.
s23d, s27ad, ands27bd are similar to those obtained by us for
the case of cross-phase-modulation in doped photonic crys-
tals f21g, whose practical realization represents a formidable

FIG. 3. sColor onlined Proposed implementation of the optical
CPHASElogic gate between two single-photon qubits, using polariz-
ing beam splitterssPBS’sd, and p cross-phase-modulationsXPMd
studied here.
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experimental challenge. By contrast, the recent experimental
progress in trapping and manipulating light pulses in dy-
namically controlled photonic band gaps in atomic vapors
f28g puts the present scheme within easy experimental reach
considering present day technology.
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