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Using a three-dimensional finite-difference time-domain method, we present an extensive study of
the losses in two-dimensional(2D) photonic crystals patterned in step-index waveguides. We
examine the origin of these losses and their dependence on the various system parameters such as
the filling ratio, the lattice constant, the shape of the holes, and the propagation direction.
Furthermore, we examine the possibility of studying these losses using an approximate 2D model;
the validity and limitations of such a model are discussed in detail. ©2004 American Institute of
Physics. [DOI: 10.1063/1.1790068]

I. INTRODUCTION

Photonic crystals are periodic dielectric structures which
exhibit in their spectrum band gaps, i.e., frequency regimes
of forbidden electromagnetic(EM) wave propagation.1–4

This property makes them excellent candidate structures in
controlling the EM waves, giving them the ability to be used
in a broad range of applications, such as e.g., in telecommu-
nications for the construction of ultrasmall integrated cir-
cuits.

To have a full control of the EM wave propagation an
omnidirectional band gap is required. This can be achieved
only with a three-dimensionals3Dd photonic crystal. How-
ever, the difficulty in the fabrication of such a crystal, espe-
cially at submicron length scales(required for applications in
the telecommunications) has turned the attention of the com-
munity to an alternative approach. This is 2D-slab photonic
crystals(PCs), i.e., 2D PCs combined with a vertical step-
index waveguide.5–18 In most of the cases the PCs consist of
airholes deeply etched in the waveguide structure(see Fig.
1). 2D-slab PCs offer 3D control of the EM waves without
the presence of a 3D crystal; the control in the lateral direc-
tion is offered by the 2D PC while in the vertical direction by
the classical step-index waveguide. Moreover, they have the
great advantage that they can be easily fabricated, using ex-
isting microelectronics techniques, with full control over the
fabrication. Thus they can offer ideal components for ul-
tradense photonic circuits.

For the 2D-slab systems, two possible designs have been
studied, both theoretically and experimentally. One is a high-
contrast(membrane) system, where the index contrast be-
tween the central/guiding layer and the claddings is high; the
other is a low-contrast system, i.e., with low index contrast
between core and claddings. A lot of effort has been devoted
to the study of these systems and to the determination of
which design is more suitable for applications in optoelec-

tronics. It was found that the high-contrast structures usually
exhibit more losses at discontinuities(such as corners and
interfaces) and they cannot be easily coupled with classical
waveguiding structures;11–14 they have though the great ad-
vantage that they can exhibit true(lossless) guided modes
(modes below the light line of the claddings) for a large
frequency-wave-vector regime. On the other hand, the low-
contrast structures show better behavior(lower losses)
(Refs.19 and 20) at discontinuities and they can be more
easily coupled with classical structures. They do not exhibit
though lossless guided modes. In low-contrast systems, an
issue of central importance is the understanding of the
mechanism responsible of losses and finding ways to mini-
mize them, so the structures can be used in applications.
Thus, it is very significant to carefully study the losses and
their dependencies on the parameters of the system. The aim
of this paper is to shed some light on this topic.

Before we proceed to the detailed presentation of our
structures and results, we consider as useful to comment
more on losses and to mention the sources of loss in slab
systems. The losses here can be distinguished as intrinsic and
nonintrinsic. The intrinsic losses are usually defined as the
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FIG. 1. A 2D-slab photonic crystal made of airholes patterned on a step-
index dielectric waveguide.
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losses for perfect, infinite, and infinitely deep PCs, and they
originate from the lossy nature of the guided modes, which
in a largev–k region lie above the light cone of the sub-
strate. The nonintrinsic losses are either coupling losses, or
“imperfection” losses. The coupling losses result from the
mismatch between the mode of the unetched dielectric wave-
guide, which is usually the input system, and the mode of the
perforated guide; they are usually expressed through back
reflected waves. The imperfection losses, which are ex-
pressed mostly through coupling to the out-of-plane radiative
modes, are due to deviations from the “perfect” design of the
infinitely deep and perfect cylindrical holes; i.e., they come
mainly from the insufficient etch depth(these losses usually
scale with the vertical overlap of the guided mode with the
missing hole part) and the imperfect hole shape. A theoretical
analysis of the role of these two parameters can be found in
Refs.19, 21, and 22.

In this paper, restricted to low-contrast systems, and
more specifically to systems of hexagonal PCs of airholes
deeply etched in an InP/GaInAsP step-index waveguide, we
study the dependence of the losses on various of the system
parameters. The choice of this specific InP/GaInAsP combi-
nation is based on the fact that it has been already used in a
large experimental effort. A lot of PC structures patterned on
InP/GaInAsP combination have been already fabricated and
characterized experimentally;21–23 their theoretical analysis
though has been restricted to 2D approximate models.

Our study here is done mainly through transmission co-
efficient calculations and by the use of the finite difference
time domain(FDTD) method in three dimensions. The use of
the three-dimensional FDTD method is essential in slab PCs,
as it can treat the system exactly, without the requirement of
any adjustable or phenomenological parameters. Initially we
consider deeply etched systems with either perfect cylindri-
cal or conical holes and we study the transmission/losses
dependence on the air filling ratio, the propagation direction,
the lattice constant of the PC, and the conical hole shape. For
the dependence on the waveguide profile and on the etch
depth see Ref. 24. At a second step, we examine if and to
what extent the study of losses in 2D-slab systems can be
done using a 2D model, which treats a system of trenches
etched in the step-index dielectric guide. The possibility of
using a 2D calculation to describe 2D-slab structures is ex-
tremely important, as it provides an easy and fast optimiza-
tion of the structures, without the requirement of the heavy
and time consuming 3D calculations.

II. GEOMETRY AND METHOD OF CALCULATION

The structure studied here has the vertical profile shown
in Fig. 1: a GaInAsP layer withn=3.35 and depthd
=434 nm is surrounded by InP calddingsn=3.17d. The top
caldding has depth of 200 nm while the bottom one can ex-
tend up to 4 mm. (Analytic calculations show that a layered
structure with this vertical profile is monomode in the verti-
cal direction for a large frequency regime around 1.5mm—
the regime of our interest here.) In this three layer structure a
PC (of lattice constanta) formed by a hexagonal array of
airholes is created.

In almost all the calculations here we consider PCs of
eight unit cells in the propagation direction and “infinite” in
the perpendicular one(by imposing periodic boundary con-
ditions at the related system boundaries). Moreover, in most
of the cases the lattice constant isa=420 nm, and the total
depth of the holessdhd is 3.834mm. In the cases where dif-
ferent values are used it is written explicitly. The choice of
the above parameters was dictated in a large degree from the
fact that there is a large amount of experimental work carried
out on structures with the above characteristics, thus we had
the opportunity to validate our calculations by comparing
directly with corresponding experimental data.23 The use of
periodic boundary conditions gave the chance to choose a
source with a constant lateral profile(a source confined in the
lateral direction would introduce one more parameter into
the problem, obscuring thus the influence of the actual sys-
tem parameters) avoiding simultaneously scattering effects
due to the finite system size.

As it has been already mentioned, the study of losses
here is done mainly through calculations of the transmission
coefficient sTd and by employing the three-dimensional
FDTD method.25 The method and the calculation procedure
(source choice, discretization, boundary conditions, and
transmission calculation) are described in detail in Ref. 24.
We just mention here, for completeness, that the transmission
calculation procedure consists of sending a pulse, with ver-
tical profile of the guided mode of the nonperforated struc-
ture, and calculating the electric and magnetic field compo-
nents as functions of time, at many detection points after the
PC. Using fast fourier transform the frequency dependence
of these fields is obtained and through it the Poynting vector.
The transmission coefficient is calculated as the ratio of the
transmitted to the incident Poynting vector, both averaged
over the different detection points.(The incident Poynting
vector is calculated without the presence of the PC.)

III. LOSSES VS SYSTEM PARAMETERS

In this section we discuss the dependence of the trans-
missionT (and thus of the losses) on various system param-
eters. More specifically, we examine the influence onT of
the air filling ratio, the conicity of the holes, the propagation
direction, and the lattice constant.

A. Losses vs filling ratio

The scatterers’ filling ratio is one of the most important
parameters for the propagation in 2D PCs, as it determines in
a large degree the width of the 2D gap. In the case of “true”
2D hexagonal PCs of infinitely long airholes in InP host, the
larger gap is obtained for filling ratiosff =2pr2/ sa2Î3dg
around 70%. Thus, as optimumf regime for applications,
one could simply considerf <0.7 also for PC-slab systems
(based on InP structures). Unfortunately, when talking about
slab systems the question of “bestf” does not have such a
simple answer. The reason is that the change off has also a
considerable effect on the losses: increase off results in
increase of losses. A demonstration of this effect is given in
Fig. 2, where we show theGM and GK transmission coeffi-
cient sTd for air filling ratios f =0.22 [panel(a)] and f =0.5
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[panel (b)]. One can clearly see thatT decreases asf in-
creases; i.e., the enlargement of the gap is followed by an
increase of losses. These losses, as reflection calculations
show, are mainly coupling losses, coming from an increase
of the modal mismatch between the mode of the bare guide
and the mode of the perforated guide. This increase of the
mismatch is not unexpected, as increase of the air filling ratio
can be considered as equivalent to decrease of the effective
index of the mode, relatively to the index of the bare guide
guided mode.

Taking into account the above, one can understand that
the search for an optimumf regime, for a given application,
depends strongly on the requirements of the specific
problem/device. The relative importance of a large gap and
lossless transmission for a given application is the key pa-
rameter.

B. Conicity of the holes

Another parameter that influences the transmission and
is strongly related with the air filling ratio is the shape of the
holes. Since in most samples the holes are not completely
cylindrical but to a large degree conical(at least their bottom
part), it is of considerable importance for the applications to
examine the effect of conical hole shape. In Fig. 3 we show
the GM transmission for the systems of Fig. 2 but for holes

with conical bottom part(the T for cylindrical holes is also
shown here—see dashed lines—for easier comparison). The
cone starts at about 1.5mm below the guiding layer(i.e., the
conical part has a height of 1.7mm and it constitutes 53% of
the part below the guiding layer depth of the holes), repre-
senting a “successful” experimental etching procedure. From
Fig. 3 one can see that the conical shape at low filling ratios
does not lead to a dramatic change of the transmission(com-
pared to that for cylindrical shape). The same does not hold
for large filling ratios, where the effect of the conical shape is
much more pronounced.

Trying to examine in detail how the conical hole shape
affects the propagation, we calculated the electric field all
over the sample for both conical and cylindrical holes. A
representative result is shown in Fig. 4; it shows the field
E= uEu over a verticaly-z cross section(y is the propagation
direction) of the system of Fig. 3(b), for cylindrical (a) and
conical(b) holes. The incident wave is monochromatic, with
frequencya/l=0.405, and the propagation direction isGM.
The source is launched at the left side of the system and the
vertical lines show the “end” of the PC. One can see in Fig.
4(b) how the conical hole shape “destroys” the guided mode
profile, increasing the coupling to out-of-plane radiative
modes. The effect is the same also for smallf but less pro-
nounced.

FIG. 2. (a) GM (solid line) and GK (dashed line) transmission vs dimen-
sionless frequencysa/ld for the 2D-slab system described in Sec. II. The air
filling ratio is f =0.22. (b) The same as in(a) for f =0.5. a is the lattice
constant andl the free space wavelength.

FIG. 3. (a) GM transmission vs frequency for the system of Fig. 1(a) for
conical (solid line) and cylindrical(dashed line) holes.(b) The same as in
(a), for the system of Fig. 2(b). The frequency is given in dimensionless
units,a/l, wherea is the lattice constant andl the free space wavelength.
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The influence of the conical hole shape has been already
studied in the literature but not in connection with the filling
ratio; it was the influence of the conical angle that has been
mainly discussed, for both bulk PC-slabs21,22 and PC-slab
waveguides;26 as came out from that study, increase of the
conical angle results in an increase of the out-of-plane losses.
The increase of the losses for largerf that we note here is not
though due to the resulting increase of the conical angle, as
one could possibly argue(for constant hole depth, largerf
corresponds to larger conical angle). Detailed calculations
using 3D FDTD and an “equivalent” 2D model(see Sec. IV)
showed that the main factor responsible for the larger losses
at largerf is the f itself.

C. Losses vs propagation direction

Going back to Fig. 2 and comparingGK and GM trans-
mission, one can see that at the dielectric band theGK trans-
mission is larger than theGM one, while the case is opposite
at the air-band edge. At the dielectric band, the relative re-
duction of theGM transmission in relation toGK one is due
to an increase of the reflection. At the air-band edge, on the
other hand, where stronger diffraction occurs, there is a con-
siderable contribution to the losses coming from coupling to
out-of-plane radiative modes. If one considers systems finite
in the direction perpendicular to that of the propagation(re-
placing periodic boundary conditions by absorbing condi-
tions), the reduction ofT at theGK air-band edge, compared
to T at theGK air-band edge, is more dramatic due to the
presence of also lateral losses(confirmed by our calcula-
tions). This may be due to the strong diffraction combined
with the fact that theGK air-band edge corresponds toGM
propagation regime—in contrast to theGM air-band edge,
which corresponds toGK gap and thus no lateral losses are
allowed. We have to mention here that we found the above
GK vs GM characteristics at all filling ratios that we exam-
ined. They have also been found experimentally23 for a sys-
tem of f <30%.

D. Lattice constant influence

Another parameter of the problem of propagation in PC-
slab crystals is the lattice constantsad of the PC. Changing

the lattice constant one changes the working frequency re-
gime (this is the way usually used in the experiments) and
thus the vertical profile of the guided mode(the vertical pro-
file depends on the ratiod/l, whered is the depth of the
guiding layer). Thus the results are not scalable in respect to
lattice constant, as happens in pure 2D systems, and the re-
quirement for a 3D calculation becomes essential. What is
mainly influenced by the change ofa in PC-slab crystals is
the losses.

In Fig. 5 we show theGM transmission vs the dimen-
sionless frequencya/l for the system of Fig. 2(b), for three
different lattice constants:a=280 nm, 420 nm, and 520 nm.
One can see here that the smaller thea the better the trans-
mission. This originates from the fact that for smallera the
near gap regime is at larger frequencies. At larger frequen-
cies the guided mode is more confined vertically and thus
less influenced by the finite hole depth and the conicity of the
holes, if it exists. It means less out-of-plane losses. In our
calculation though, since the holes are cylindrical and deep
enough, out-of-plane losses do not constitute a significant
loss component. Here the losses are mainly coupling losses,
due to the modal mismatch between the guided mode of the
bare guide and that of the perforated guide. A possible ex-
planation for the larger mismatch at largera may be the
following: Since this mismatch is induced by the holes, when
the guided mode is more extended vertically the hole volume
that it “sees” becomes larger and thus the mismatch also
becomes larger.

IV. 3D VERSUS 2D-VERTICAL CALCULATIONS

Since 3D FDTD calculations are very time and memory
consuming(not allowing, thus treatment of large systems,
complicated elements, and coupling to input/output devices),
it is of considerable importance to replace them, where pos-
sible, with equivalent 2D calculations. For the study of losses
in PC-slab crystals, the most reasonable choice of an
“equivalent” 2D calculation concerns a system such as the
one of Fig. 6, i.e., a system of trenches combined with the
step-index guide of the actual PC-slab. In what follows, we
try to study such a system(2D-vertical model) and to exam-

FIG. 4. (a) Field uEu over a verticaly-z cross-section of the structure of Fig.
3(b), for cylindrical (a) and conical(b) holes(y is the propagation direction
and z the direction vertical to the layers). The axes are in grid steps(gs),
where 1 gs=a/14 in the horizontal axis anda/28 in the vertical one. The
frequency isa/l=0.404. The vertical line shows the “end” of the PC. For
conical holes the conical region is betweenz=9 andz=167.

FIG. 5. GM transmission vs dimensionless frequency, for the system de-
scribed in Sec. II, withf =0.5, for three different PC lattice constants:a
=280 nm,a=420 nm, anda=520 nm.
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ine if and to what extent its study can replace the 3D study of
the actual slab. This is done mainly by comparing corre-
sponding 2D- vertical and 3D results.

A problem here is the choice of a “proper” air filling
factor for the 2D-vertical systemsf2Dd; must it be that of the
3D system or should one choose a different value(e.g.,
trenches with width equal to the diameter of the holes of the
3D system)? Since there is not a straightforward answer, we
consider the filling factor as one of the parameters of the
problem and we examine various differentf2D values.

In an attempt to estimate thequantitativepower of the
2D-vertical model we performed a variety of comparative 3D
and 2D-vertical calculations. What we found is that it is not
possible to reproduce both the gap width and the midgap
position of the actual 3D system, with whatever choice of
f2D. Also, as it is apparent, one cannot reproduce anyGK
versusGM transmission features, since the model cannot dis-
tinguish between the two directions. Despite these disadvan-
tages the quantitative power of such a model was found to be
not negligible. Choosingf2D= f, one can reproduce quite
well the 3DGM transmission close to the air-band edge and
around the dielectric band edge(see Fig. 7). Moreover,
choosingsr /ad2D=r /a (r: hole or trench radius) one can ob-
tain a midgap close to the average ofGK andGM midgaps of
the actual system(with a much larger gap width).

Although the quantitative power of the 2D-vertical
model is somehow limited, the case is not the same for its
qualitative power, which is really significant: it can repro-
duce extremely well the dependence of the losses on almost
all the system parameters. A characteristic example showing
the power of this model is given in Fig. 8. In Fig. 8(a) we
show the 2D-vertical transmission for a system withf2D

=0.3, for cylindrical(i.e., rectangular) and conical(i.e., tri-
angular) trenches(solid and dashed line, respectively). Fig-
ure 8(b) shows the same forf2D=0.6.(In the conical case the
cone starts immediately below the guiding layer.) Comparing
Figs. 8(a) and 8(b) one can see the larger influence of the

conical shape at larger air filling ratios, which we discussed
in the precoding section in connection with 3D calculations.
The additional point here is that in changing the filling ratio
we kept the conical anglesfd constant, changing the depth of
the trenches; nevertheless the relation “larger thef, larger the

FIG. 6. The structure studied within the 2D-vertical model.

FIG. 7. TransmissionsTd vs dimensionless frequencysa/ld for a system
with f = f2D=0.25, for lattice constantsa=300 nm(a), a=420 nm(b), and
a=600 nm(c). The solid lines show theGM transmission produced by a full
3D calculation and the dashed lines theT obtained by the 2D-vertical model.
The depth of the holes isdh=2.234mm.

FIG. 8. 2D verticalT vs dimensionless frequencysa/ld for a system with
f2D=0.3 (a) and f2D=0.6 (b), for cylindrical (solid lines) and conical holes
of conical anglef=4.4° (dashed lines). The depth of the holes(in mm) for
the cylindrical case is mentioned on the graphs.
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influence of the conical shape” still holds. This verifies that
the parameter responsible for the larger influence of the coni-
cal shape at larger air filling ratios is the filling ratio itself
and not any variation in the conical angle. Moreover, the
filling ratio seems to have more dramatic influence than the
conical angle on the conical holes’ system transmission. Cal-
culating the transmission for conical holes withf2D=0.6 and
depth equal to that of the cylindrical holes case, changing
thus the conical angle(to <2f), we found approximately the
same transmission as in Fig. 8(b) shown by dashed line.

V. CONCLUSIONS

We studied systematically the transmission properties
and the losses of hexagonal photonic crystal slabs, by the use
of 3D FDTD method. The detailed 3D calculations led to a
thorough investigation of the dependence of the losses on the
filling ratio, the hole shape, and the lattice constant of the
hexagonal PC. Our studies were concentrated in physically
realizable low-contrast structures, consisting of a GaInAsP
layer surrounded by InP claddings.

We found that, as the filling ratio of the air holes in-
creases, the width of the gap increases but at the same time
the absolute transmission decreases, and therefore the losses
increase. Depending on the application one might need to
have a big gap, but it is guaranteed that it will be associated
with considerable losses. We also found that the shape of the
holes plays an important role in accounting for losses, espe-
cially at large air filling ratios. Moreover we found that the
losses depend on the propagation direction, as well as on the
PC lattice constant; as the lattice constant is increased, losses
are also increased. While in 2D studies the transmission is
scalable with respect to the lattice constant, this is not the
case for 2D finite PC-slabs. The reason is that the vertical
profile of the propagating mode does not scale with the lat-
tice constant,a, and therefore losses and transmission will
depend ona. The width of the gap though of the finite PC-
slabs remains the same asa is changed, since it scales with
the lattice constant.

Finally, we compared our detailed 3D FDTD results with
equivalent 2D results. We found out that a 2D system of
trenches gives results with great qualitative agreement with
the accurate 3D results.

Our detailed numerical studies can provide sufficient
guidance in designing and fabrication of low-loss photonic
crystal slab structures(PCs, PC waveguides,27 combiners,
splitters etc.). Simultaneous measurements of the transmis-
sion properties can be used to judge the quality of the fabri-
cated structures.

ACKNOWLEDGEMENTS

The authors would like to thank H. Benisty and R. Fer-
rini for useful discussions. Ames Laboratory is operated by
the U.S. Department of Energy by Iowa State University
under Contract No. W-7405-Eng-82. This work was sup-
ported by the Director for Energy Research Office of Basic
Science and European Union Information Societies Technol-
ogy project PCIC(Photonic Crystal Integrated Circuits).

1J. D. Joannopoulos, R. D. Meade, and J. N. Winn,Photonic Crystals -
Molding the Flow of Light(Princeton University Press, Princeton, New
Jersey, 1995).

2Photonic Band Gap Materials, NATO Advanced Studies Institute Series E:
Applied Sciences, edited by C. M. Soukoulis(Kluwer Academic, Dortre-
cht, 1996) Vol. 315.

3See the special issue on Electromagnetic Crystal Structures, Design, Syn-
thesis, and Applications[J. Lightwave Technol.17, 11 (1999)].

4C. M. Soukoulis,Photonic Crystals and Light Localization in the 21st
Century(Kluwer Academic, Dordrecht, 2001).

5T. F. Krauss, R. M. de la Rue, and S. Brand, Nature(London) 383, 649
(1996).

6D. Labilloy et al., Phys. Rev. Lett.79, 4147(1997).
7H. Benistyet al., J. Lightwave Technol.17, 2063(1999), and references
therein.

8T. Baba, N. Fukaya, and J. Yonekura, Electron. Lett.35, 654 (1999).
9M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, Appl. Phys. Lett.
76, 952 (2000).

10M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P.
Pearsall, Appl. Phys. Lett.77, 1937(2000).

11E. Chowet al., Nature(London) 407, 983 (2000).
12S. Y. Lin, E. Chow, and S. G. Johnson, Opt. Lett.25, 1297(2000).
13E. Chow, S. Y. Lin, J. R. Wendt, S. G. Johnson, and J. D. Joannopoulos,

Opt. Lett. 26, 286 (2001).
14S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A.

Kolodziejski, Phys. Rev. B60, 5751(1999).
15T. Ochiai and K. Sakoda, Phys. Rev. B63, 125107(2001).
16T. Ochiai and K. Sakoda, Phys. Rev. B64, 045108(2001).
17L. C. Andreani and M. Agio, IEEE J. Quantum Electron.38, 891 (2002).
18L. C. Andreani and M. Agio, Appl. Phys. Lett.82, 2011(2003).
19H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D.

Cassagne, A. Beraud, and C. Jouanin, Appl. Phys. Lett.76, 532 (2000).
20W. Bogaerts, P. Bienstman, D. Taillaert, R. Baets, and D. De Zutter, IEEE

Photonics Technol. Lett.13, 565 (2001).
21R. Ferrini, B. Lombardet, B. Wild, R. Houdre, and G.-H. Duan, Appl.

Phys. Lett. 82, 1009(2003).
22R. Ferrini, R. Houdre, H. Benisty, M. Qiu, and J. Moosburger, J. Opt. Soc.

Am. B 20, 469 (2003).
23R. Ferrini, D. Leuenberger, M. Mulot, and M. Qiu, IEEE J. Quantum

Electron. 38, 786 (2002).
24M. Kafesaki, M. Agio, and C. M. Soukoulis, J. Opt. Soc. Am. B19, 2232

(2002).
25A. Taflove, Computational Electrodynamics, The Finite Difference Time

Domain Method(Artech House, Boston, 1995).
26Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, Appl. Phys.

Lett. 82, 1661(2003).
27The propagation losses in waveguide modes created within the gap regions

of the photonic crystals follow more or less the analysis presented in this
paper and they possess the same dependence on the different parameters as
the propagating modes.

4038 J. Appl. Phys., Vol. 96, No. 8, 15 October 2004 Kafesaki, Soukoulis, and Agio

Downloaded 04 Oct 2004 to 139.91.254.18. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp


