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Abstract: We propose an optical dimer formed from two spherical lenses 
bound by the pressure that light exerts on matter. With the help of the 
method of force tracing, we find the required graded-index profiles of the 
lenses for the existence of the dimer. We study the dynamics of the opto-
mechanical interaction of lenses under the illumination of collimated light 
beams and quantitatively validate the performance of proposed dimer. We 
also examine the stability of dimer due to the lateral misalignments and we 
show how restoring forces bring the dimer into lateral equilibrium. The 
dimer can be employed in various practical applications such as optical 
manipulation, sensing and imaging. 
©2016 Optical Society of America 
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1. Introduction 

In 1891 Maxwell predicted an observable mechanical effect due to light rays falling on a 
suspended disc and the concept of optical forces and the momentum of light appeared in its 
modern form [1]. Concurrently, based on the second law of thermodynamics, a similar 
conclusion was made by Bartoli [2]. These early theoretical predictions were validated in 
several experiments conducted by Lebedev, Nichols and Hull [3–5]. Since then, the 
momentum that light carries and its mechanical interaction with media has been under 
intensive scrutiny and many different aspects of the electrodynamics of light-matter 
interaction have been studied [6–10]. On the basis of these studies, many practical 
applications for this opto-mechanical effect have been proposed and realized. For example, 
the pioneering work of Arthur Ashkin and his colleagues on particle trapping, led to the 
development of optical tweezer, a methodology that has revolutionized many areas of science 
and technology [11–13]. Cavity optomechanics and cooling [14–16], microscopy and optical 
imaging [17, 18], the driving of nanoscale motors with light [19], tractor beams [20–24], and 
the radiation pressure on invisibility cloaks [25–28] are few modern applications of optical 
forces. 

The standard approach to calculating the optical force is to integrate the divergence of 
stress tensor - which is constructed from the electromagnetic fields - over the volume of 
interest [29, 30]. Nevertheless, this procedure is not always straightforward and it often 
requires time-consuming computations. In Ref [31]. the language of geometrical optics was 
used to simplify the computational complexities of the standard procedure. This method, 
which is known as force tracing, uses geometric optics expressions to calculate the optical 
force field along the trajectories of light rays in a medium. Subsequently, in another paper 
[32] the method of force tracing was applied to investigate the mechanical collision of 
Luneburg lenses under the illumination of collimated light beams and its potential 
applications in optical manipulation. 

Following on from these two previous works, we, here, use the force tracing technique to 
design an optical dimer constructed from two graded-index lenses [see Fig. 1(a)]. We use the 
optical force to bond the lenses and cancel the gravitational force. We find that one of the 
lenses should be a conventional Luneburg lens [33] and the other a modified Luneburg lens, 
which we will refer to as pseudo Luneburg lens. Using the force tracing technique to study 
the dynamics of these lenses when illuminated by collimated light rays we demonstrate how 
the dimer can be constructed. We also study the stability of the system and examine its 
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sensitivity to the possible misalignment. We show that the proposed dimer is stable and the 
arising optical lateral forces compensate for any misalignment, bringing the lenses into 
alignment with the illuminating light beam. The resulting optical dimer is a versatile device 
which can offer an appropriate platform for various applications such as sensing, particle 
imaging and optical manipulation. 

 
Fig. 1. (a) 3D schematic of the proposed dimer under the illumination by a collimated light 
beam. (b) The geometry of the suggested dimer (for parameter definitions see main text). 

2. A brief review of force tracing 

The method of force tracing introduced in [31] is based on an approximate formulation which 
is valid in the realm of geometrical optics. In this regime, the electromagnetic fields are taken 
as the quasi-plane waves with rapidly varying phases and slowly varying amplitudes, 
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where ω  is the angular frequency, k


 is the wave vector, 0k cω= , c  is the speed of light in 

vacuum, and 0E


 and 0H


 are vectors with approximately constant amplitudes. Taking the 
above expressions for the electromagnetic fields and employing the Hamiltonian-based ray 
formulation [33, 34] assisted by the appropriate constitutive equations, the Lorentz force 
density in a spherically symmetric isotropic medium simplifies to [31], 
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Fig. 2. (a) The ray tracing of the pseudo Luneburg lens. (b) The profile index of the pseudo 
Luneburg lens for 14px R=  compared to the profile index of conventional Luneburg lens 

( 1 2 1a.u.l.R R= = ). 
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where b  is the impact parameter of the incident ray, ˆne  is the unit vector normal to the plane 
of rays, and ( )n r  is the graded-index profile of corresponding medium. It should be noted 

that in Eq. (2) the obtained Lorentz force density is normalized with respect to 
2

0 0 2Eε


, in 

which 0ε  is the permittivity of free space. In Ref [31]. it was shown that the magnitude of 
normalized Lorentz force density in a generalized isotropic medium is directly proportional to 
the curvature of traced ray trajectories. In other words, the more sharply the rays bend in the 
medium, the stronger the opto-mechanical interaction. By applying the force tracing method 
on several example optical devices and comparing the obtained results with those of the full-
wave analyses, the authors of Ref [31]. confirmed the validity of the formulation. 
Nonetheless, the expressions for anisotropic media given in Ref [31]. are only true for the 
diagonal constitutive tensors and they should be modified for non-diagonal cases. 

Using the force tracing mehod, it is easy to show that a collimated light beam applies a 
positive force on a Luneburg lens, pushing it in the direction of propagation. Conversely, light 
rays entering a Luneburg lens from a single point exert a negative force on the lens. In other 
words, if the separation between two neighboring Luneburg lenses is small enough, the light 

#260902 Received 10 Mar 2016; revised 13 Apr 2016; accepted 13 Apr 2016; published 17 May 2016 
© 2016 OSA 30 May 2016 | Vol. 24, No. 11 | DOI:10.1364/OE.24.011376 | OPTICS EXPRESS 11379 



will cause an attractive force between them. This effect was investigated in Ref [32]. for both 
elastic and fully inelastic collisions. It was shown that the two lenses exhibit simultaneous 
oscillatory and translational motion and undergo an infinite series of collisions. However, in a 
realistic situation the presence of dissipation affects the motion of lenses and damps the 
amplitude of the oscillations. It was also discussed in Ref [32]. how the radiation pressure can 
combine two and four Luneburg lenses in ways which are useful for various types of optical 
manipulation. 

 

Fig. 3. The force fields applied on the combination of a pseudo Luneburg lens with 14px R=  
(the red lens) and a Luneburg lens (the green lens) induced by the light rays propagating from 
the left for (a) 1.25x R∆ =  (repulsion), and (b) 2.4x R∆ =  (attraction). 

3. The dimer design 

Here, we design a dimer formed from two spherically symmetric lenses. The lenses should be 
bonded together without contact while the whole system is suspended by an upward optical 
force balancing the downward effects of gravity. The system of two Luneburg lenses in Ref 
[32]. under the illumination of collimated light beam exhibit translational and oscillatory 
motion and the lenses experience a series of collisions until dissipation effects damp away the 
oscillations such that the lenses remain in continuous contact. The analysis in Ref [32]. shows 
that the force on the second lens is negative (attractive) when the lenses are close to each 
other. This force becomes positive (repulsive) when the second lens is far enough from the 
first one. In other words, the second lens experiences a potential well due to its interaction 
with the first lens. This potential well is the origin of collisions and the reason why the system 
with lenses at a non-zero separation in unstable. Due to the unwanted collisions and the 
seperational instability, the system of two Luneburg lenses is not an appropriate choice for 
making the dimer. In designing the dimer we need to engineer a potential that results in a 
stable non-zero separation between the lenses. This implies that the force on the second lens 
should be positive in the vicinity of the first one. Then, as the second lens gets farther away, 
the exerted force should decrease until it reaches negative values. However, the force cannot 
remain negative and after reaching a local minimum it should tend toward the positive values. 
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Fig. 4. (a) The forces applied on the pseudo Luneburg lens ( 1F ) and the Luneburg lens ( 2F ), 

as a function of the distance between the lenses. Note that 2F  is zero at points ax x=  and 

bx x= . (b) Temporal variation of 1F  due to the fluctuation of incident light intensity over 

time. (c) The density plot of 2F  versus time and the separation between the lenses. 

Let us assume that the second lens in the dimer is a Luneburg lens. Given this assumption, 
the minimum negative force on the second lens occurs at the focal point of the first lens. 
Moreover, in order for the second lens to feel a positive force at short separation distances, 
the first lens should deflect the incoming rays less than the Luneburg lens. These two criteria 
show that the first lens should be a modified version of Luneburg lens (pseudo Luneburg 
lens) with the focal point somewhere outside the lens ( 1px R> ). In order to obtain the profile 

index of pseudo Luneburg lens, we first determine the turning angles of rays ( )bχ  toward the 
origin of lens as a function of the impact parameter and then solve the following implicit 
integral equation for ( )n r  [35], 

 ( ) ( )1

1 2 2 2

1exp
R

R

b db
n r

r b rr

χ
p r

 
 =
 − 
∫  (3) 

#260902 Received 10 Mar 2016; revised 13 Apr 2016; accepted 13 Apr 2016; published 17 May 2016 
© 2016 OSA 30 May 2016 | Vol. 24, No. 11 | DOI:10.1364/OE.24.011376 | OPTICS EXPRESS 11381 



 
Fig. 5. (a) The separation between the lenses vs time. (b) The paths of the two lenses and the 
corresponding center of mass vs time for 0 1.25x R∆ = , 10.5sdk −= . (see Visualization 1) 

where ( ) 1rn r Rr =  and 1R  is the radius of the lens, which is equal to 1 in arbitrary units of 
length (a.u.l.) for the current case. Note that for a specific range of wavelengths the a.u.l. 
should be chosen such that the radii of lenses are always larger than the wavelength of 
incident beam and also, the variations of the profile indices in that range of wavelengths 
remain negligible. The profile index and ray trajectories of a pseudo Luneburg lens with the 
focal point 14px R=  are shown in Fig. 2. After recognizing the functionality of lenses, we 
proceed to demonstrate how the system of the two lenses functions as a dimer. We apply the 
method of force tracing to obtain the force fields within the lenses. Then with the obtained 
force profiles we formulate the dynamics of the interaction between the lenses and calculate 
the corresponding equations of motion. 

In order to find the force profiles inside the lenses, we perform the ray tracing with respect 
to the refractive indices and the geometrical boundaries in the whole domain of interest. Then, 
with the use of Eq. (2), we trace the force fields along the ray trajectories. The results of the 
force tracing analysis are shown in Fig. 3. As seen in Fig. 3, all the incoming rays enter the 
pseudo Luneburg lens in parallel and hence a constant positive force is always exerted on the 
pseudo Luneburg lens. However, compared to the Luneburg lens, the curvatures of rays in the 
pseudo Luneburg lens are smaller and hence the magnitude of applied force on the pseudo 
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Luneburg lens is also smaller. The force acting on the second lens in the dimer is dependent 
on its distance from the first lens. In the vicinity of first lens the force on the second lens is 
positive and as the distance between the lenses increases, the force on the second lens 
decreases monotonically so that it becomes negative. After reaching a local minimum this 
force increases toward the positive values again. This trend can be seen in Fig. 4, where the 
approximate total force acting on the two lenses versus the distance between them is shown. 
In order to find this approximate total force we integrate the force density along rays all over 
the lenses as ( )( ) ( )( )

normalized normalized
F f r n r dτ τ τ= ∫

d
d

dd  , where τ  is the ray tracing 

parameter [31]. 

 

Fig. 6. The velocity ( )cx t′  (a.u.l./s) and the acceleration ( )cx t′′  (a.u.l./s2) of the center of 
mass of dimer vs time. 

In order to study the dynamics of opto-mechanical interaction between the lenses, we 
assume they have identical masses 1 2m m m= =  and radii 1 2 2R R R= =  [see Fig. 1(b)]. As 
indicated in Fig. 4(a), we assume that the force on the first lens is independent of its position, 
i.e. ( )1 1 1F x F= , and the force on the second lens is subject to its distance from the first lens, 

i.e. ( )2 2F F x= ∆  with 2 1x x x∆ = − . Then the equations of motion for the first lens 1x  and the 
separation x∆  are, 

 
2

1 1 1
2 d

d x dx Fk g
dt mdt

+ = −  (4) 

 
2 22

2 1 2 1
2 2 2 d

d x d x F Fd x d xk
m dtdt dt dt
−∆ ∆

= − = −  (5) 

where 29.8m sg ≈  is the acceleration of gravity and dk  is the damping factor. In order to 
study the dynamics of the system in a more realistic situation, we assume that the intensity of 
illuminating beam changes with respect to time and, as shown in Fig. 4(b), the force on the 
first lens gradually approaches the gravitational force (i.e. ( )1 1F F t= ). Note that ( )1F t  is 
directly proportional to the intensity of incident light and the intensity of incident beam has a 
time dependence similar to that shown in Fig. 4(b). Consequently, as shown in Fig. 4(c), the 
forces on the second lens is also time-varying, i.e. ( )2 2 ,F F x t= ∆ . With the use of the given 
force profiles, we solve the equations of motion and the obtained numerical results are 
presented in Fig. 5. The two lenses initially are at rest and located at a distance like 0x∆  from 
each other. The time dependence of the separation parameter behaves like a damped 
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oscillatory function superimposed on a sigmoidal curve. As implied from Fig. 5(b) and 
verified in Fig. 6, as soon as the beam is turned on, the two lenses accelerate and, depending 
on the influence of the existing forces, exhibit translational and/or oscillatory motion. 
However, the oscillatory and translational motions are damped away after an initial transient 
stage and the lenses asymptotically reach equilibrium, at which they will be suspended 
steadily. 

 
Fig. 7. (a) The geometry of dimer with the lateral misalignment under the illumination of 
collimated light rays. (b) The force fields on the lenses as a result of light rays shining from 
below ( 0.25y R∆ = − ). 

The oscillatory and translational motion of system is affected by several parameters such 
as the initial separation 0x∆ , the damping factor dk , the initial acceleration of the lenses and 
the time-dependence of incident light beam. The damping factor influences the speed of the 
lenses and their final suspending positions. As the damping factor of system grows, the 
translational motions of lenses vanish faster, i.e. the corresponding sigmoidal curves converge 
to their asymptotes in a shorter time. The damping factor also affects the oscillations of 
second lens - the larger the damping factor the smaller the amplitudes of the oscillations. The 
other parameter which determines the final position of second lens and its oscillations is the 
initial separation between the lenses. Depending on the initial position of lenses, the response 
function of dimer varies. In fact, if the initial separation 0x∆  is close to a value like 0optx∆ , for 

which we have ( ) ( )2 0 1,0 0 0optF x F∆ − ≈ , then the amplitudes of oscillations would be 
minimized and the motion of system would be mostly translational. It is also obvious that in 
order for the dimer to work correctly, the initial position of second lens 2,0x  should be before 

the second zero of ( )2 ,0F x∆ , i.e. 2,0 bR x x< <  [see Fig. 4(a)]. The initial acceleration 
imposed on the lenses and the intensity variation of incident light beam with respect to time 
determines the duration of the transient stage (i.e. the steepness of the sigmoidal curve) as 
well as the location of the final suspending points (i.e. the asymptotes). A clearer 
understanding of the motion of the lenses can be gained if we investigate the motion of the 
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center of mass 1 2cx x x= + ∆ . As shown in Fig. 6, the incident light induces an initial 
acceleration on the center of mass in the direction of propagation of the light. However, this 
acceleration decreases over time and at the moment of maximum forward speed a force in the 
direction opposite to the direction of light propagation is induced, decelerating the center of 
mass. Likewise, after a period of time, the deceleration is replaced by another acceleration. 
The sequence of acceleration and deceleration goes on in a damped cyclic manner untill 
eventually the center of mass stops its motion. Based on the above explanations and the 
provided figures it is proven that the optical force can cause the considered lenses to float in 
the space and function as a dimer. 

 
Fig. 8. The restoring force acting on the Luneburg lens vs the lateral misalignment. 

A final consideration is the lateral stability of the proposed dimer and its sensitivity to 
misalignment of lenses, which is likely to occur in practice. In order to examine how the 
dimer responds to the misalignment, we assume that in addition to the longitudinal separation 

x∆ , there exists a lateral separation y∆  between the lenses [see Fig. 7(a)]. Then we apply the 
force tracing method on the shown setup to study how the lateral forces yF  due to the 
misalignment may affect the dimer. The result of force tracing analysis are shown in Fig. 
7(b). When the lenses are completely aligned along the x  axis, i.e. 0y∆ = , owing to the 
spherical symmetry of lenses the net lateral force acting on each of the lenses is zero. 
However, if the lenses are not placed along the x  axis, then the symmetry of setup around the 
direction of beam illumination is broken and due to this asymmetry the distribution of rays in 
the second lens is uneven. For instance, if 0y∆ <  as shown in Fig. 7(b), more rays will enter 
the left half of the second lens than the right half and, due to the impact parameters and 
curvatures of corresponding rays, a positive lateral force 0yF >  will be exerted on the second 
lens. In other words, if the lenses are not positioned along the direction of the incident light 
rays, a restoring lateral force appears to align the lenses along that direction and bring back 
the dimer into its equilibrium state. It should be noted that as soon as y∆  starts changing 
from zero, the restoring force emerges and keeps increasing monotonically. However, if y∆  
is growing beyond a threshold value such as cy∆ , which is related to the focal point of pseudo 
Luneburg lens, no rays will impinge on the second lens and hence there will be no optical 
force acting on it. It means that the restoring force must reach its maximum level somewhere 
between 0y∆ =  and cy y∆ = ∆ . Figure 8 shows the total lateral force versus the lateral 
distance between the two lenses. Needless to mention that similar story can be said for the 
case 0y∆ > . Hence, as long as the lateral distance is smaller than the threshold value, the 
dimer is able to correct any possible lateral misalignment and, hence, is a stable device. 
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4. Conclusion 

In conclusion, we have proposed an optical dimer constructed from a conventional Luneburg 
lens and a pseudo Luneburg lens, whose profile index was computed with the use of the 
implicit integral equation. Then we performed the method of force tracing on the two lenses 
and calculated the optical force fields along the ray trajectories inside the lenses. Based on the 
obtained force profiles, we studied the dynamics of the opto-mechanical interaction of lenses 
under the illumination of a collimated light beam and showed how the combination of lenses 
forms the dimer. We also studied the stability of dimer and we showed that the existence of a 
restoring force leads to the dimer self-correcting small lateral misalignment. Finally, as a 
suggestion for the future work we should add that the presented work can constitute a first 
step towards designing the light-driven alignment and self-aligned optical systems. 

Acknowledgments 

Work at FORTH was supported by the European Research Council under ERC Advanced 
Grant No. 320081 (PHOTOMETA). Work at Ames Laboratory was partially supported by the 
U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences 
and Engineering, Contract No. DE-AC02-07CH11358. 

 

#260902 Received 10 Mar 2016; revised 13 Apr 2016; accepted 13 Apr 2016; published 17 May 2016 
© 2016 OSA 30 May 2016 | Vol. 24, No. 11 | DOI:10.1364/OE.24.011376 | OPTICS EXPRESS 11386 


	References and links
	1. Introduction
	Fig. 1. (a) 3D schematic of the proposed dimer under the illumination by a collimated light beam. (b) The geometry of the suggested dimer (for parameter definitions see main text).
	2. A brief review of force tracing
	Fig. 2. (a) The ray tracing of the pseudo Luneburg lens. (b) The profile index of the pseudo Luneburg lens for  compared to the profile index of conventional Luneburg lens ().
	Fig. 3. The force fields applied on the combination of a pseudo Luneburg lens with  (the red lens) and a Luneburg lens (the green lens) induced by the light rays propagating from the left for (a)  (repulsion), and (b)  (attraction).
	3. The dimer design
	Fig. 4. (a) The forces applied on the pseudo Luneburg lens () and the Luneburg lens (), as a function of the distance between the lenses. Note that  is zero at points  and . (b) Temporal variation of  due to the fluctuation of incident light intensity...
	Fig. 5. (a) The separation between the lenses vs time. (b) The paths of the two lenses and the corresponding center of mass vs time for, . (see 25TVisualization 125T)
	Fig. 6. The velocity  (a.u.l./s) and the acceleration  (a.u.l./sP2P) of the center of mass of dimer vs time.
	Fig. 7. (a) The geometry of dimer with the lateral misalignment under the illumination of collimated light rays. (b) The force fields on the lenses as a result of light rays shining from below ().
	Fig. 8. The restoring force acting on the Luneburg lens vs the lateral misalignment.
	4. Conclusion



