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We investigate the influence of chirality on the PT -symmetric and PT -broken phase of PT -symmetric
chiral systems. Starting from the point that transverse magnetic (TM) and transverse electric (TE) waves have
different exceptional points, we show that with circularly polarized waves (which are linear combinations of
TM and TE waves) mixed PT -symmetric phases can be realized and the extent of these phases can be highly
controlled by either or both the chirality and the angle of incidence. Additionally, while the transmission of
both TM and TE waves in nonchiral PT -symmetric systems is the same for forward and backward propagation,
we show that with chirality this symmetry can be broken. As a result, it is possible to realize asymmetric, i.e.,
side-dependent, rotation, and ellipticity in the polarization state of the transmitted wave. Our results constitute a
simple example of a chiral PT -symmetric optical system in which the various phases (full PT , mixed, broken)
and the asymmetric effects can be easily tuned by adjusting the chirality parameter and/or the angle of incidence.
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I. INTRODUCTION

One of the most fundamental axioms in quantum mechan-
ics is that all physical observables should correspond to real
eigenvalues, so the use of Hermitian Hamiltonians guarantees
that the entire eigenspectrum of the system will be real. The
hermiticity of the Hamiltonian though is not necessary for
the reality of the eigenvalues. Parity-time (PT -) symmetric
Hamiltonians are a class of Hamiltonians which, despite being
non-Hermitian, present the possibility of real eigenvalues
[1–4], as was first shown in 1998, by Bender and coworkers
[1].

In principle, PT -symmetric Hamiltonian means that it is
invariant under the combined action of the parity, P̂, and
time-reversal, T̂ , operators, i.e., [P̂T̂ , Ĥ ] = 0, with the [ …]
denoting the commutator. Since the action of parity on the
momentum and position operators, p̂ and r̂ respectively, re-
sults to p̂ → −p̂, r̂ → −r̂, and the time-reversal to p̂ → −p̂,
r̂ → r̂ and i → −i [4], the requirement of PT symmetry in a
single particle, one-dimensional quantum Hamiltonian results
in the symmetry condition for the potential V ∗(−r) = V (r).
The reality of the eigenvalues is obtained for sure if both the
Hamiltonian and its eigenstates obey the PT symmetry. In
fact a characteristic feature in PT -symmetric Hamiltonians
is the reality of the eigenvalues below a critical value of the
potential (region where also eigenstates are PT -symmetric,
usually called the PT phase), while above that critical value
(in the so-called PT -broken phase) the PT symmetry of
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the eigenstates breaks down and the eigenvalues become
complex. At the transition point between PT and PT -broken
phase, the so-called exceptional point (EP), two or more
eigenvalues and eigenvectors coincide, making EP to be a
singular point, associated with peculiar dynamic evolution
characteristics.

Recently, the PT -symmetry concept was extensively ap-
plied in optical physics [5–12]. Realizing PT symmetry in
optical systems requires n∗(−r) = n(r), for the refractive
index n (in the framework of paraxial approximation of wave
equation) and it is attained in practice by spatially modulating
gain and loss in materials. Since gain and loss can be to
a large extent controlled externally, the application of PT
symmetry in optics offered the opportunity to demonstrate
also experimentally many unique and unusual phenomena
associated with PT -symmetric systems. Such phenomena in-
clude anisotropic transmission resonances, i.e., unidirectional
reflectionless perfect transmission [13], unidirectional invis-
ibility [14], PT -breaking transitions [15], coherent perfect
absorption (CPA) [16] and extraordinary nonlinear effects
[17]. More recently, a lot of work appeared combining PT
symmetry with metamaterials, and mainly with zero index
metamaterials [18–22], showing particularly interesting ef-
fects; for example tunneling [19] mediated by excitation of
a surface wave at the interface between the gain and loss
domains, unidirectional transparency, asymmetric reflection,
and other asymmetric propagation features, coherent perfect
absorber-laser modes [23], etc.

Many of the observed and demonstrated interesting phe-
nomena in PT -symmetric systems (such as coherent perfect
absorption or lasing) are observed at or beyond the EPs
at which the reality of the spectrum breaks down and the
PT symmetry of the eigensolutions vanishes, although the
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“Hamiltonian” continues to be PT -symmetric. This in op-
tical systems (where the equivalent “potential” involves the
frequency and the refractive index) occurs at a critical value of
either frequency or refractive index. A lot of work up to now
has been devoted to the identification of exceptional points
in different systems and the investigation of effects related
with them [24]. A large amount of such work concerns scat-
tering configurations rather than paraxial beam propagation
systems. There, it was shown that the identification of EPs
and the different PT -related phases can be done through
the eigenvalues of the scattering matrix, which in the PT
phase are unimodular, while in the PT -broken phase are not
unimodular [13]. Examining the scattering matrix eigenvalues
and eigenvectors in PT -symmetric structures under oblique
incidence, an interesting feature was observed, namely differ-
ent phase transition points for transverse electric (TE) polar-
ization and for transverse magnetic (TM) polarization under
the same angle of incidence [25]. This resulted in a mixed
PT phase for circularly polarized waves (formed by a linear
combination of TM and TE waves) and opened the possibility
for multiple EPs even in simple two-dimensional systems,
expanding thus the potential of PT -symmetric systems for
different and unusual propagation and scattering features.

As was mentioned already, a lot of work on PT symmetry
has combined the PT -symmetry concept with metamaterials,
investigating the unique effects that can arise by combining
the uncommon and fascinating properties of metamaterials
(e.g., negative or zero refractive index, extreme permittivity
or permeability, etc.) with the great potential offered by PT
symmetry. An important class of metamaterials that are highly
unexplored under the concept of PT symmetry are the so-
called chiral metamaterials [26], i.e., metamaterials composed
of building blocks that cannot be superimposed with their mir-
ror images using translations and rotations [27,34]. A chiral
medium is characterized by strong magnetoelectric coupling
(i.e., an applied electric field results not only to electric but
also to magnetic polarization; same for an applied magnetic
field). This results in a different index of refraction for left-
handed circularly polarized (LCP) waves and right-handed
circularly polarized (RCP) waves, while circularly polarized
waves are the eigensolutions of the wave equation in such
media. We have to note here that chirality appears not only
in metamaterials, but in some naturally occurring materials
as well [28]. However, its effects in metamaterials are huge
in comparison with those in natural materials, because in the
latter, as opposed to the former, the structural features and the
corresponding currents responsible for chirality are restricted
by atomic size.

Among the interesting and particularly useful effects asso-
ciated with chiral metamaterials are (a) the so-called circular
dichroism (i.e., different absorption for LCP and RCP waves),
resulting, e.g., in a transformation of an incident linearly
polarized wave to elliptical, and (b) optical activity, i.e., the
rotation of the polarization of an initially linearly polarized
wave passing through a chiral medium. As was mentioned
before, these effects are quite strong in metamaterials even
in thin layers of them. Indeed, extremely high optical activity
and strong circular dichroism have been demonstrated in
certain designs of chiral metamaterials, at frequencies from
microwaves up to the visible range [29]. Moreover, negative

refractive index has been predicted and demonstrated in such
metamaterials [30–33].

The above-mentioned phenomena and possibilities make
the chiral metamaterials extremely valuable for a large variety
of applications, especially applications based on the wave-
polarization control, such as ultrathin circular polarizers and
polarization rotators, wave plates, polarization modulators,
etc. Based on the above, the idea to combine chiral media
with PT symmetry has great promise for unique polarization-
related effects, such as asymmetric polarization rotation, cir-
cularly polarized-wave lasers, etc. Indeed, the first studies
investigating EM wave scattering by a two-dimensional chiral
PT -symmetric system under normal incidence [26] showed
the independence of EP from the chirality parameter (i.e., the
parameter quantifying the magnetoelectric coupling) and the
possibility of controlling separately and superimpose almost
at will the PT -related features (e.g., EPs, CPA-laser points)
and the chirality-related features (ellipticity, polarization rota-
tion), achieving, e.g., CPA lasing of elliptically or circularly
polarized waves.

The aim of this work is to go beyond the existing
effectively one-dimensional study, and to investigate PT -
symmetric chiral metamaterials under oblique incidence, and
explore the associated transmission and scattering features
and possibilities, including the different attained PT -related
phases. Assuming a simple geometry containing two homoge-
neous and isotropic chiral layers one with gain and one with
loss, we start our investigation by deriving the necessary con-
ditions for a chiral system to be PT symmetric (Sec. II). Ap-
plying those conditions in our system, we find that the chiral-
ity has strong influence on PT -symmetric and broken phases
(Sec. III). In particular, by tuning the chirality parameter
and/or the angle of incidence we observe three distinct phases
exhibited by our system: full PT -symmetry phase, mixed
PT -symmetry phase, and broken PT -symmetry phase. Fur-
thermore, we observe asymmetric transmission effects, such
as asymmetric ellipticity and asymmetric polarization rotation
of the transmitted waves. We show that these asymmetric
effects are not only chirality dependent but also incidence-
angle dependent, a property giving great ability for an external
control. All the above effects demonstrate the large potential
of the PT -symmetric chiral systems in the control of the
propagation and polarization properties of electromagnetic
(EM) waves.

II. PHYSICAL SYSTEM AND MAIN EQUATIONS

A. PT -symmetry conditions in general chiral systems

The standard formulations for PT -symmetric optical sys-
tems rely on their analogy to a Schrödinger problem. Like-
wise, here, in order to derive the corresponding PT -symmetry
conditions for chiral systems, we write Maxwell’s equations
as an eigenvalue problem. We start from the curl equations,
∇ × E = iωB and ∇ × H = −iωD, in which we insert the
chiral constitutive relations D = εε0E + i(κ/c)H and B =
μμ0H − i(κ/c)E, where ε, μ, κ refer to the relative per-
mittivity, permeability and the chirality parameter, respec-
tively (ε0, μ0 are the vacuum permittivity and permeability,
respectively, and c is the light velocity). Solving for the fields
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FIG. 1. The model PT -symmetric chiral system studied in the
present work. It consists of two layers characterized by complex
permittivities, permeabilities, and chiralities. It is illuminated by
obliquely incident either TM-polarized plane wave (blue) or TE-
polarized plane wave (grey).

B and D we obtain an eigenvalue system of the following
form:

Â

[
B
D

]
= ω

[
B
D

]
, (1)

where

Â =
[−i∇A1(r) × − iA1(r)∇× −i∇A2(r) × −iA2(r)∇×

i∇A3(r) × +iA3(r)∇× i∇A4(r) × +iA4(r)∇×
]
,

(2)

and A1(r) = −iκc/(εμ − κ2), A2(r) = μμ0c2/(εμ − κ2),
A3(r) = εε0c2/(εμ − κ2) and A4(r) = iκc/(εμ − κ2), where
for simplicity we have omitted the space dependence in ε, μ,

and κ . (Note that due to the magnetoelectric coupling in the
constitutive relations it is not possible to achieve a simple
eigenvalue problem working with the fields E and H .)

The eigenvalue problem (1) is formally analogous to
the Schrödinger problem in quantum mechanics, with the
tensor-operator Â playing the role of a Hamiltonian. For

a PT -symmetric “Hamiltonian” we should require that
[P̂T̂ , Â] = 0, i.e., P̂T̂ Â = ÂP̂T̂ .

Taking into account that P̂T̂ (i∇ ×) = i∇ × and following
the procedure of Refs. [18,26], we obtain the necessary con-
ditions for a chiral system to be PT symmetric, as follows:

ε(r) = ε∗(−r), μ(r) = μ∗(−r), κ (r) = −κ∗(−r). (3)

The achievement of full PT -symmetry phase though, i.e.,
of real eigenvalues, is obtained if, besides the “Hamiltonian”,
its eigenstates also should be PT symmetric. In our sys-
tem [see Eq. (1)], the role of eigenstates is played by the
“vector” composed of the magnetic induction, B, and the
displacement field, D. Since, B and D are related to E and
H through linear chiral constitutive relations and because E
and H are more commonly used in EM wave propagation
description, we will examine/discuss in the following first
the PT -symmetry properties of E and H . Having in mind
our model system shown in Fig. 1, we consider circularly
polarized eigenwaves E± [29,34] (the subscript + corre-
sponds to RCP electromagnetic waves while the − to LCP
waves) propagating, after their refraction at an air–chiral
interface, along the x-z plane (see Fig. 1) (with incident
wave vectors forming an angle θi with the z axis); these
are waves of the form E± = E0(cos θ±x̂ ± iŷ + sin θ±ẑ)
ei(q±−ωt ) where q± = k±(z cos θ± − x sin θ±), E0 is the am-
plitude being a real number, k± = ω(

√
εμ ± κ )/c are the

wave vectors in the chiral material (their space depen-
dence is omitted here, for simplicity), and θ± are the wave
propagation/refraction angles. (The corresponding magnetic
field can be found by Maxwell’s equations as H± =
∓i

√
εε0/μμ0E0(cos θ±x̂ ± iŷ + sin θ±ẑ)ei(q±−ωt ).)

The time-reversal symmetry can be understood as equiva-
lent to “motion reversal” of the process [35–38]. Therefore,
the action of the time-reversal operator, T̂ (i → −i), in E±
and H± gives

T̂

(
E±
H±

)
=

(
E0

(
cos θ∗

±x̂ ∓ iŷ + sin θ∗
±ẑ

)
e−i(q∗

±+ωt )

±i
√

ε∗ε0/μ∗μ0E0(cos θ∗
±x̂ ∓ iŷ + sin θ∗

±ẑ)e−i(q∗
±+ωt )

)
. (4a)

The action of parity,P̂, operator flips the space (x̂ → −x̂, ŷ → −ŷ, ẑ → −ẑ), i.e.,

P̂T̂

(
E±
H±

)
=

(
−E0(cos θ∗

±x̂ ∓ iŷ + sin θ∗
±ẑ)ei(q∗

±−ωt )

∓i
√

ε∗ε0/μ∗μ0E0(cos θ∗
±x̂ ∓ iŷ + sin θ∗

±ẑ)ei(q∗
±−ωt )

)
, (4b)

with the star denoting complex conjugation. It is also noted
that, the complex conjugation in the propagating angles θ±
comes from Snell’s law [27,39]. Employing the conditions
(3) to associate the quantities ε, μ, q± and θ± with their PT
counterparts, we conclude that

P̂T̂

(
E±
H±

)
= −

(
E∓
H∓

)
. (5)

From Eq. (5) one can see that under the action of PT an
initial RCP wave transforms to LCP and vice versa (except a
phase factor). Considering this and the constitutive relations
for chiral media in connection with Eqs. (3), one can derive
the same conclusion for the B and D fields; this implies that

the eigenvectors in our case are not fully PT symmetric.
This nonfull PT symmetry of the eigenvectors though does
not forbid the existence of real eigenvalues in our problem.
Here the reality of the eigenvalues (PT -symmetric phase)
is ensured by the degeneracy of RCP/LCP eigenwaves with
respect to the frequency [26]; both RCP and LCP waves share
a common degenerate eigenvalue ω, as is concluded from
Eqs. (1) and (2). Therefore, the conditions (3) ensure both
the PT symmetry of the “Hamiltonian” and the possibility of
existence of real eigenvalues, and thus of a full PT -symmetric
phase in a chiral system. In the following, we will exploit
this possibility and investigate further its consequences in
scattering configurations, where the “role” of the Hamiltonian
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is undertaken by the scattering matrix [15] involving all the
transmission and reflection elements for the systems under
consideration.

B. Scattering of a linearly polarized plane
wave by a PT -symmetric chiral system

In this section we discuss the calculation of the transmis-
sion and reflection properties of a PT -symmetric chiral sys-
tem, i.e., of a system obeying the conditions (3), for a linearly
polarized incident plane wave under oblique incidence. Our
model system is composed of two chiral slabs, infinite along x
and y directions and of thickness d along z, as shown in Fig. 1.
The structure has a total thickness L = 2d and is embedded in
air. The first slab is confined between −L/2 � z � 0 and the
second slab is confined between 0 � z � L/2. The system is
characterized by complex material parameters, which are the
permittivity, permeability and chirality of each slab.

We assume that we have either TM or TE polarized inci-
dent plane waves, arriving at angle θi from the left side, as
shown in Fig. 1:

TM :

{
E (A)

i = Ei‖(cos θix̂ + sin θi ẑ) eiki (z cosθi−xsinθi )

H (A)
i = Ei‖

Z0
ŷ eiki (z cosθi−x sinθi )

(6)

and

TE :

{
E (A)

i = Ei⊥ŷ eiki (z cosθi−x sinθi )

H (A)
i = −Ei⊥

Z0
(cos θix̂ + sin θi ẑ)eiki (z cosθi−x sinθi )

, (7)

where Ei‖, Ei⊥ are the amplitudes for TM and TE waves,
respectively, ki = ω/c is the vacuum wave number and Z0 =√

μ0/ε0 is the vacuum wave impedance. The subscript ‖ in
the fields indicates the component that lies in the plane of
incidence (x-z in Fig. 1) while the subscript ⊥ indicates the
perpendicular component.

Writing the fields in the chiral slabs as a linear combination
of RCP and LCP waves and applying the boundary conditions
of the continuity of the tangential components of the electric
and magnetic fields at the three interfaces, z = −d, z = 0 and
z = d , one can calculate the fields inside and outside the chiral
slabs through the solution of a 12 × 12 linear system of
equations (see Appendix A for details); the system is solved
numerically due to its complex expressions. From the solution
of the 12 × 12 system one can obtain the reflection and trans-
mission amplitudes for TM and TE polarized electromagnetic
waves incident on the chiral PT -symmetric structure, which

are defined as(
Et⊥
Et‖

)
=

(
t⊥⊥ t⊥‖
t‖⊥ t‖‖

)(
Ei⊥
Ei‖

)
= Tlin

(
Ei⊥
Ei‖

)
, (8)

and (
Er⊥
Er‖

)
=

(
r⊥⊥ r⊥‖
r‖⊥ r‖‖

)(
Ei⊥
Ei‖

)
= Rlin

(
Ei⊥
Ei‖

)
. (9)

The subscript t in Eq. (8) indicates the transmitted wave
while the subscript r in Eq. (9) the reflected wave. The first
subscript in the amplitudes r and t indicates the output wave
polarization while the second the incident wave polarization.

In order to fully characterize the polarization state of the
waves passing through our chiral system, we can calculate
the ellipticity, χ (directly connected to the circular dichro-
ism), and the rotation angle, ψ (i.e., orientation angle of the
polarization ellipse in respect to the axis y, a measure of
the optical activity), for those waves. This can be done by
calculating the corresponding Stokes parameters [39], which
describe completely the state of polarization of a wave and are
directly connected with tan(χ ) and tan(2ψ ), as is discussed in
detail in Appendix B.

C. Circularly polarized wave incidence
and the scattering matrix

As has been already mentioned, in scattering configura-
tions the identification of the different PT -related phases
and the EPs can be done by examining the scattering matrix
eigenvalues. In the PT -symmetric phase the eigenvalues, σi,
of the scattering matrix are unimodular (i.e., obey |σi| = 1),
in contrast to the PT -broken phase in which |σi| 	= 1 and
the eigenvalues form pairs of reciprocal magnitude [7,13]
(here the subscript i counts the different eigenvalues). At the
symmetry breaking point, i.e., the EP, two or more eigenvalues
coincide.

To investigate the different PT -related phases in our sys-
tem and to identify the position of exceptional point/points
the first step is to calculate the scattering matrix, S, and
its eigenvalues. Taking into account that the eigenwaves in
chiral systems are the circularly polarized waves, it can be
seen that the elements of the S matrix can be obtained from
the reflection and transmission coefficients presented in the
previous subsection after transformation in a circular polar-
ization basis (see Appendix A). To identify though the proper
scattering matrix formulation (i.e., the proper arrangement of
the transmission and reflection coefficients within the scatter-
ing matrix) it is essential to write both the incoming to the
system and the outgoing waves in circular polarization basis
and illustrate the connection of the scattering matrix to the
different input and output wave amplitudes. In this respect the
electric field outside the PT -symmetric optical system can be
expressed as

E(z, t ) =
{

B+
1 ê+ eiq + B−

1 ê−eiq + A+
1 ê+e−iq + A−

1 ê−e−iq, z < −d

B+
2 ê+ e−iq + B−

2 ê−e−iq + A+
2 ê+eiq + A−

2 ê−eiq, z > d
, (10)
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FIG. 2. Schematic representation of the scattering of circularly
polarized plane waves by a two-layer PT -symmetric chiral optical
system.

where A±
1 , A±

2 , B±
1 , and B±

2 are amplitudes of the ingoing
and outgoing RCP (+) and LCP (−) waves as shown in
Fig. 2, ê+ = cosθix̂ + iŷ + sinθi ẑ, ê− = cosθix̂ − iŷ + sinθi ẑ
and q = ki(z cos θi − x sin θi ), with θi the incidence angle.
Therefore the system can be described by four input and
four output ports (see Fig. 2), giving a 4 × 4 scattering
matrix, S (consisting of eight transmission and eight reflection
coefficients), defined by

⎡
⎢⎢⎣

A−
1

B+
2

A+
1

B−
2

⎤
⎥⎥⎦ = S

⎡
⎢⎢⎣

B+
1

A−
2

B−
1

A+
2

⎤
⎥⎥⎦ ≡

⎡
⎢⎢⎢⎣

rleft
−+ t right

−− rleft
−− t right

−+
t left
++ rright

+− t left
+− rright

++
rleft
++ t right

+− rleft
+− t right

++
t left
−+ rright

−− t left
−− rright

−+

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

B+
1

A−
2

B−
1

A+
2

⎤
⎥⎥⎦.

(11)

In Eq. (11) t left
++, t left

−−, t left
+−, t left

−+ and rleft
++, rleft

−−,
rleft
+−, rleft

−+ are the transmission and reflection coefficients
for LCP(−)/RCP(+) light incident from the left while
t right
++ , t right

−− , t right
+− , t right

−+ and rright
++ , rright

−− , rright
+− , rright

−+ are the
transmission and reflection coefficients for LCP (−) /RCP
(+) light incident from the right (for their calculation see
Appendix A). As was mentioned also in the previous para-
graph, depending on the arrangement of the amplitudes
A±

1 , A±
2 , B±

1 , B±
2 the scattering matrix S can be formulated in

several ways. However, the S matrix defined as in Eq. (11)
satisfies the relation PT S(ω∗)PT = S−1(ω) [15], which is a
fundamental condition obeyed by PT symmetry.

III. REPRESENTATIVE RESULTS

A. Controlling PT -symmetry phase

In this subsection, we investigate the different possible
attainable phases in our double-layer PT -symmetric structure
shown in Fig. 2, by numerically evaluating the scattering
matrix eigenvalues under oblique incidence. We assume first
the simplest case of chirality κ = 0 and calculate the eigenval-
ues of the scattering matrix for TE and TM electromagnetic
waves, separately. (Note that in this case the S matrices
are 2 × 2 and defined as in Refs. [13,22].) Results for the
eigenvalues vs frequency are shown in Figs. 3(a) and 3(b).
A surprising property is that the EP frequencies for the TM
and TE polarizations under oblique incidence are different
[25]; this implies the existence of an intermediate phase, to
be referred to as mixed phase, where the PT -symmetry phase

FIG. 3. PT -symmetric (white), mixed PT -symmetric (light-
gray) and broken PT -symmetric (dark-gray) phases for obliquely
incident waves for the system shown in Fig. 1 with chirality κ = 0.
The figure shows the eigenvalues of scattering matrices at θi = 30◦:
(a) for TM, (b) TE, and (c) for CP waves. The EPs versus frequency
as the incidence angle varies are illustrated in (d). The relevant
material parameters of the two media are: ε(−z) = 4 − 0.6i, ε(z) =
4 + 0.6i, μ(−z) = 1.5 − 0.15i, μ(z) = 1.5 + 0.15i.

still exists for one polarization while it is broken for the other
in the same system and incident wave direction.

The mixed phase is accessible by employing circularly
polarized (CP) incident waves (since they can be written as
a linear combination of TM and TE waves). Indeed, calcu-
lating the eigenvalues of the scattering matrix for CP waves
[Eq. (11)], as a function of frequency, we observed the three
different possible phases, as shown in Fig. 3(c). In the full PT
symmetric phase all the eigenvalues of the scattering matrix
maintain their unimodular nature, in the mixed PT phase
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[light grey in Fig. 3(c)] a pair of the eigenvalues is unimodular
while the other is not and in the fully broken PT phase (dark
grey) all the eigenvalues are nonunimodular.

Besides the existence of three different phases, and thus
two EPs in our system, the other particularly interesting and
peculiar feature is that the position of these two EPs and thus
the boundaries of the different phases can be highly controlled
by the angle of incidence. This is demonstrated in Fig. 3(d),
where the dependence of the mixed phase extent as a function
of the angle of incidence from 0◦ to 90◦ degrees is shown.
One can see that the frequencies of the two EPs fend off
as we increase the incidence angle, while the two EPs, as is
expected, coincide for normal incidence.

To investigate the impact of the chirality on the position
of EPs and the different phases of PT -symmetric media
we consider a chiral PT -symmetric bilayer as illustrated in
Fig. 2; the first layer (gain) has permittivity ε(−z) = εr − εii,
permeability μ(−z) = μr − μii and chirality κ (−z) = −κr +
κii while the second layer (loss) ε(z) = εr + εii, μ(z) = μr +
μii and chirality parameter κ (z) = κr + κii, respectively, so as
to fulfill the necessary conditions for PT symmetry [Eq. (3)].
Considering permittivity and permeability values the same as
in Fig. 3, introducing a nonzero chirality and repeating the
calculations of the eigenvalues of the scattering matrix, we
obtain what is shown in Fig. 4(a). In Fig. 4(a) one can see
that when the chirality parameter is relatively weak, the same
three phases shown in Fig. 3(c) are obtained, but with slightly
different boundaries.

This clearly shows that one important impact of chirality
is the tuning of the different phases and the EPs. We have to
note here that this is in contrast to what has been observed
for normal incidence, where the position of EP is totally
independent of chirality [26]. To investigate in more detail
the impact of chirality on the different phases and the EPs of
our system we calculated the scattering matrix eigenvalues for
three distinct frequencies, corresponding to full PT , mixed
PT and broken PT phases in Fig. 4(a) (marked by the
colored dots) as a function of the chirality parameter. The
result is shown in Figs. 4(b)–4(d), where by changing the
chirality under oblique incidence a quite unexpected behavior
is observed.

By increasing the chirality parameter, both real and imag-
inary parts, the system passes from PT -symmetric phase to
mixed PT phase (light grey), then re-enters to PT -symmetric
phase and with further increase of chirality re-enters to mixed
PT phase and, finally, ends up in the fully broken phase.
Analogous behavior is shown in Figs. 4(c) and 4(d), demon-
strating that by changing the chirality not only can we tune
the EPs but we can also access different EPs and observe
different phases and phase re-entries. Note that it is possible
to achieve analogous control of the PT -symmetry-related
phase by changing only the real or only the imaginary part
of the chirality; see Appendix C for details. This give us an
additional degree of freedom for PT -phases control.

Another important possibility regarding the control of the
different PT phases and the EPs is observed if one calcu-
lates the eigenvalues of the S matrix as the incidence angle
varies. Performing such calculations, for the same parameters
as in Fig. 4(a) and for three characteristic frequencies we
obtain the results shown in Figs. 4(e)–4(g). Figures 4(e)–4(g)

FIG. 4. PT -symmetric, mixed PT -symmetric, and broken PT -
symmetric phases in a chiral PT system under oblique incidence of
CP waves. The relevant material parameter of the two media are:
ε(−z) = 4 − 0.6i, ε(z) = 4 + 0.6i, μ(−z) = 1.5 − 0.15i, μ(z) =
1.5 + 0.15i and κ (−z) = −0.05 + 0.05i, κ (z) = 0.05 + 0.05i. Panel
(a) shows the eigenvalues, |σi|, i = 1 − 4, of S matrix vs frequency
for θi = 30◦. Panels (b), (c), and (d) show these eigenvalues as a
function of chirality parameter, while panels (e), (f), and (g) show
them as a function of incidence angle for three different dimension-
less frequencies, ωL

c = 13.0, 14.0, and 15.5, respectively.

demonstrate the possibility of external dynamic control of
the different PT -symmetry-related phases and the EPs. By
changing the incidence angle, different phases are accessible,
as well as phase re-entries, as, e.g., in Fig. 4(f). Therefore,
our results show a very rich behavior of PT -symmetric chiral
systems, including existence of mixed phases and phase re-
entries; all these features can be highly controlled by tuning
the chirality parameter and/or the angle of incidence, allowing
thus a full external and even dynamic control of the PT
system phases.

To investigate the impact of the different PT -symmetry-
related phases on the transmission and reflection properties
of our chiral system we examine next the reflection and trans-
mission coefficients for obliquely incident circularly polarized
waves as a function of chirality. We do that for the case
of Fig. 4(b), i.e., ωL/c = 13 and at θi = 30◦, where a rich
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FIG. 5. Reflected and transmitted power coefficients for the chi-
ral PT system shown in Figs. 1 and 2 under oblique incidence
of CP waves. The relevant material parameters of the two media
are the same as in Fig. 4. Panels (a) and (b) show the reflection
and transmission vs chirality for RCP incident waves. Panels (c)
and (d) show the reflection and transmission vs chirality for LCP
incident waves. The angle of incidence is 30° and the dimensionless
frequency is ωL

c = 13. The positions of the EPs [see Fig. 4(b)] are
marked by vertical dotted lines.

behavior regarding different PT phases and EPs has been
observed. The result is presented in Fig. 5, where we plot the
reflected and transmitted power coefficients for RCP and LCP
waves incident from both sides of our system, as a function of
chirality. A feature worth noticing in Fig. 5, which is absent
for normal incidence [26], is the presence of cross-polarized
transmission and of copolarized reflection coefficients. These
cross-polarized terms (outcome of the breaking of the fourfold
rotational structure symmetry in the plane perpendicular to
the propagation direction, due to the interfaces) seem to be
enhanced in the mixed PT and the broken PT phases.

Another observation from Fig. 5 is the strong asymmetry
in both the reflection and the cross-polarized transmission
coefficients for waves impinging from the left and the right
side of the system. Moreover, there is a strong asymmetry in
the system response for RCP and LCP waves. In particular,
the system seems to cause attenuation of any incident RCP
wave or transformation of it to the LCP wave (either through
reflection or through transmission) while it enhances the
LCP wave impinging on it. This LCP-RCP asymmetry is a
direct consequence of the fact that we have chosen positive
imaginary part for the chirality parameter (implying a specific
structure circular dichroism response) and it is reversed for
structures with negative imaginary part of κ .

The above-mentioned asymmetric effects reveal a very rich
structure behavior and a possibility of an at-will control of

FIG. 6. Transmission coefficients for TM and TE polarized plane
waves incident from the left [(a), (c)] and right [(b), (d)] side
of the PT -symmetric system shown in Fig. 1. The relevant ma-
terial parameter of the two media are ε(−z) = 4 − 0.6i, ε(z) =
4 + 0.6i, μ(−z) = 1.5 − 0.15i, μ(z) = 1.5 + 0.15i and κ (−z) =
−0.05 + 0.05i, κ (z) = 0.05 + 0.05i. For (c) and (d) the angle of
incidence is 30°, while for (a) and (b) θi = 0◦.

the scattering and polarization of the waves impinging on
our structure. This rich behavior and the scattering control
possibilities will become more evident in the next section
where we investigate the scattering properties of the structure
under a linearly polarized incident wave.

B. Asymmetric effects in chiral PT -symmetric systems
excited by a linearly polarized wave

As was mentioned above, excitation of a chiral system with
a linearly polarized wave allows for a more detailed investi-
gation of the polarization control properties and capabilities
of the PT -symmetric chiral structure; it also allows for a
more direct comparison with potential experiments. Here we
consider a chiral PT -symmetric system as the one discussed
in the previous subsection (i.e., with the same material param-
eters) and calculate the transmission coefficients Ti j = |ti j |2,
with ti j the amplitudes defined in Eq. (8), for a linearly polar-
ized wave incident from either the left or the right side of the
system, as shown in Fig. 1. Figure 6 shows these transmission
coefficients for both normal and oblique incidence. It is evi-
dent that for normal incidence the transmission amplitudes for
both the left- and right-side incident plane waves are exactly
the same [see Figs. 6(a) and 6(b)]. This is not the case though
for oblique incidence, as can be seen comparing Figs. 6(c)
and 6(d). For obliquely incident waves the transmission ampli-
tudes are quite different for TM and TE incident waves and the
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FIG. 7. Ellipticity and orientation angle of polarization ellipse
for TM [(c), (d)] and TE [(e), (f)] polarized plane waves incident
from the left and right side of our PT -symmetric system shown in
Fig. 1. The material parameter of the two media are the same as in
Fig. 6.

cross-polarized coefficients are side-dependent. In particular,
T⊥‖ and T‖⊥ interchange for opposite propagation directions
(T (le f t )

⊥‖ = T (right )
‖⊥ and T (le f t )

‖⊥ = T (right )
⊥‖ ) (cotransmissions T‖‖

and T⊥⊥ are side-independent, as dictated by reciprocity). The
side dependence of the cross-polarized transmission terms
implies side-dependent transmitted wave polarization.

To analyze further the polarization properties of the trans-
mitted waves we calculated their ellipticity and optical activity
(i.e., orientation angle of polarization ellipse) as a function of
frequency for the transmission data presented in Fig. 6 (see
Appendix B for the details of the calculation). For the case of
normal incidence [Figs. 7(a) and 7(b)] both the ellipticity and
optical activity are independent of the incident side, i.e., they
are fully symmetric, as is expected given the fully symmetric
transmission coefficients. [Due to the opposite sign of the
Real(κ) in the two layers, imposed by Eq. (3), the optical
rotation occurring in the first layer is cancelled out when the
wave passes through the second layer, resulting to zero optical
rotation, see Fig. 7(b).]

In the case of oblique incidence, since the transmittance
for copolarized and cross-polarized waves are different for
TE and TM waves and also side dependent, the ellipticity
and the optical activity are also different for TM and TE
polarized waves and also side dependent, as illustrated in
Fig. 7(c)–7(f). The results of Fig. 7 offer a clear demonstration
of the rich polarization control possibilities offered by the
PT -symmetric chiral systems. Note that while, in principle,
asymmetric chiral effects can be also observed in non-PT -
symmetric systems, with PT -symmetric systems we achieve
advanced polarization control capabilities combined with
all PT -related functionalities (EPs, PT -symmetric phases,
CPA-laser points for circularly polarized waves, anisotropic
transmission resonances, etc.).

To investigate further the polarization control possibilities
offered by the PT -symmetric chiral systems, we calculate
the transmission and reflection amplitudes with respect to
the incidence angle, at dimensionless frequency ωL

c = 18.3.
The results are shown in Figs. 8(a)–8(d). Figures 8(a) and
8(b) show the co-polarized (‖‖ or ⊥⊥) coefficients for TM
and TE polarized incident waves, demonstrating a strong
asymmetry (side dependence) in the reflection coefficients
which are also angle-dependent and thus angle-controllable,
while the copolarized transmissions are side-independent.
Figures 8(c) and 8(d) show the cross-polarized coefficients,
demonstrating side-asymmetric and angle-controllable cross-
polarized transmissions. In particular, as mentioned also in the
discussion of Fig. 6, the cross-polarized transmissions for TM
and TE incident waves interchange for opposite propagation
directions. An interesting feature that can be observed from
Figs. 8(a) and 8(c) is that for TM incident waves we can
have anisotropic transmission resonances [13,25], i.e., flux
conserving unidirectional perfect transmission (here Ttotal =
1, R = 0 only for waves impinging from the right side of our
system) at different incidence angles [marked with dashed
lines in Figs. 8(a) and 8(c)]. This is also possible with TE
waves (not shown here).

The angle dependence of the transmission coefficients
shown in Figs. 8(a)–8(d) leads to angle-dependent transmit-
ted wave ellipticities and optical activities, as is illustrated
in Figs. 8(e)–8(h). Moreover, once again we see that the
side dependence of the cross-polarized transmissions leads
to asymmetric ellipticities and optical activities. The results
of Figs. 8 demonstrate one more time the rich polarization
behavior of the wave interacting with a PT -symmetric chiral
system, and more importantly the possibility to highly control
this polarization externally and even dynamically. The fore-
seen applications cover all the range of applications where
passive or active polarization control is required, i.e., tunable
polarization filters, tunable polarization isolators, etc.

IV. CONCLUSION

In conclusion, we have investigated the influence of chi-
rality in a PT -symmetric chiral structure under obliquely
incident waves. We have shown that in addition to the fully
PT -symmetric and the fully PT -broken phase for oblique
incidence there is an intermediate phase, termed as “mixed”,
in which one of the TM, TE incident waves is in the PT -
symmetric and the other in the PT -broken phase. As the
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FIG. 8. Copolarized transmission and reflection coefficients [(a),
(b)] and cross-polarized transmission and reflection [(c), (d)] for TM
and TE incident waves as a function of incidence angle, at dimen-
sionless frequency ωL

c = 18.3. Panels (e)–(h) show the ellipticity and
orientation angle of polarization ellipse for TM [(e), (g)] and TE [(f),
(h)] polarized plane waves incident from the left and right side of our
PT -symmetric system. The material parameters of the two media
are the same as in Fig. 6.

angle of incidence and/or the chirality vary, a rich behavior
of these phases and the associated EPs is exhibited, with
unexpected re-entry phenomena controllable by both angle
of incidence and chirality. Moreover, we have shown that
combining PT symmetry with chirality we can achieve
propagation and scattering characteristics, like asymmetric
(side-dependent) transmission, ellipticity, and polarization ro-
tation for a linearly polarized incident wave. This asymmetric
behavior is angle dependent, offering an additional degree
of freedom for controlling the transmission and the polar-
ization properties of the electromagnetic waves interacting
with PT -chiral structures. The aforementioned phenomena
and the associated extensive opportunities for tuning EM

waves are due to interplay between gain-loss and chirality
in chiral PT -symmetric systems; these phenomena can be
exploited in a large variety of applications, ranging from
applications where advanced propagation and polarization
control is required, to even sensing applications (exploiting
the existence of multiple EPs, and the strong sensitivity as-
sociated with them [40,41]). Although our work concerns a
simple, essentially one-dimensional model system, it clearly
reveals the rich possibilities offered by just “breaking” the
problem symmetry going from normal to oblique incidence.
We expect such advanced possibilities and electromagnetic
functionalities to be further expanded in more complicated
systems like spheres and/or cylinders [24,42–45], where the
combination of chirality with other special symmetries [44]
may open a different direction in the field of non-Hermitian
photonics.
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APPENDIX A: CALCULATION OF THE REFLECTION
AND TRANSMISSION COEFFICIENTS

We consider two infinite homogeneous and isotropic chiral
slabs of thickness d each, as shown in Fig. 9. The first
slab (εB, μB, κB) is confined between z = −d and z = 0. The
second slab (εC, μC, κC ) is confined between z = 0 and z = d .
A plane wave is incident at an angle θi upon the left chiral
slab. The reflected and transmitted angles are θr and θt , the
refraction angles in the first chiral slab are θ+(B) and θ−(B),
and in the second chiral slab are θ

(C)
+ and θ

(C)
− , respectively.

(The subscript + applies to RCP and the – to LCP waves.)

FIG. 9. Problem geometry. A (1D) structure, consisting of two
layers.
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In region A (z � −d) the incident electric and magnetic fields can be written as (omitting the time dependence):

E (A)
i = [Ei⊥ŷ + Ei‖(cosθix̂ + sinθi ẑ)] exp[iki(z cosθi − x sinθi )], (A1)

H (A)
i = 1

ηA
[Ei‖ŷ − Ei⊥(cosθix̂ + sinθi ẑ)] exp[iki(z cosθi − x sinθi )], (A2)

where ηA =
√

μAμ0

εAε0
. Note that by setting Ei⊥ = 0 we have TM waves, while by setting Ei‖ = 0 we have TE waves. The reflected

electromagnetic fields can be expressed as

E (A)
r = [Er⊥ŷ + Er‖(cosθr x̂ − sinθr ẑ)] exp[−ikr (z cosθr + x sinθr )], (A3)

H (A)
r = 1

ηA
[−Er‖ŷ + Er⊥(cosθr x̂ − sinθr ẑ)] exp[−ikr (z cosθr + x sinθr )]. (A4)

In region B (−d � z � 0) the wave can be decomposed into four CP electromagnetic waves, two propagating towards the
interface z = 0 and the other two propagating towards the interface z = −d . Thus in the first chiral slab the electromagnetic field
can be represented as

E (B)
+ = E (B1)

+ (cosθ (B)
+ x̂ + iŷ + sinθ

(B)
+ ẑ ) exp[ik(B)

+ (z cosθ (B)
+ − x sinθ

(B)
+ )]

+ E (B2)
+ (cosθ (B)

− x̂ − iŷ + sinθ
(B)
− ẑ ) exp[ik(B)

− (z cosθ (B)
− − x sinθ

(B)
− )], (A5)

H (B)
+ = −i

ZB
E (B1)

+ (cosθ (B)
+ x̂ + iŷ + sinθ

(B)
+ ẑ ) exp[ik(B)

+ (z cosθ (B)
+ − x sinθ

(B)
+ )]

+ i

ZB
E (B2)

+ (cosθ (B)
− x̂ − iŷ + sinθ

(B)
− ẑ ) exp[ik(B)

− (z cosθ (B)
− − x sinθ

(B)
− )], (A6)

E (B)
− = E (B1)

− (−cosθ (B)
+ x̂ + iŷ + sinθ

(B)
+ ẑ ) exp[−ik(B)

+ (z cosθ (B)
+ + x sinθ

(B)
+ )]

+E (B2)
− (−cosθ (B)

− x̂ − iŷ + sinθ
(B)
− ẑ ) exp[−ik(B)

− (z cosθ (B)
− + x sinθ

(B)
− )], (A7)

H (B)
− = −i

ZB
E (B1)

− (−cosθ (B)
+ x̂ + iŷ + sinθ

(B)
+ ẑ ) exp[−ik(B)

+ (z cos θ
(B)
+ +x sin θ

(B)
+ )]

+ i

ZB
E (B2)

− (−cosθ (B)
− x̂ − iŷ + sinθ

(B)
− ẑ ) exp[−ikB

−(z cos θ
(B)
− + x sin θ

(B)
− )], (A8)

where ZB =
√

μBμ0

εBε0
is the wave impedance in the air–material–B interface, and k(B)

± = ω
c (

√
εBμB ± κB) [27,29,34] are the wave

numbers for circularly polarized waves propagating in the chiral material B.
In region C (0 � z � d ) there are four CP electromagnetic waves, two propagating towards the interface z = d and the other

two propagating towards the interface z = 0. Thus in the second chiral slab the electromagnetic field can be represented as

E (C)
+ = E (C1)

+ (cosθ (C)
+ x̂ + iŷ + sinθ

(C)
+ ẑ ) exp[ik(C)

+ (z cosθ (C)
+ − x sinθ

(C)
+ )]

+ E (C2)
+ (cosθ (C)

− x̂ − iŷ + sinθ
(C)
− ẑ ) exp[ik(C)

− (z cosθ (C)
− − x sinθ

(C)
− )], (A9)

H (C)
+ = −i

ZC
E (C1)

+ (cosθ (C)
+ x̂ + iŷ + sinθ

(C)
+ ẑ ) exp[ik(C)

+ (z cosθ (C)
+ − x sinθ

(C)
+ )]

+ i

ZC
E (C2)

+ (cosθ (C)
− x̂ − iŷ + sinθ

(C)
− ẑ ) exp[ik(C)

− (z cosθ (C)
− − x sinθ

(C)
− )], (A10)

E (C)
− = E (C1)

− (−cosθ (C)
+ x̂ + iŷ + sinθ

(C)
+ ẑ ) exp[−ik(C)

+ (z cosθ (C)
+ + x sinθ

(C)
+ )]

+ E (C2)
− (−cosθ (C)

− x̂ − iŷ + sinθ
(C)
− ẑ ) exp[−ik(C)

− (z cosθ (C)
− + x sinθ

(C)
− )], (A11)

H (C)
− = −i

ZC
E (C1)

− (−cosθ (C)
+ x̂ + iŷ + sinθ

(C)
+ ẑ ) exp[−ik(C)

+ (z cosθ (C)
+ + x sinθ

(C)
+ )]

+ i

ZC
E (C2)

− (−cosθ (C)
− x̂ − iŷ + sinθ

(C)
− ẑ ) exp[−ik(C)

− (z cosθ (C)
− + x sinθ

(C)
− )], (A12)

where ZC =
√

μcμ0

εCε0
, and k(C)

± = ω
c (

√
εCμC ± κC ).
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In region D (z � d), the transmitted electromagnetic fields can be written as

E (D)
t = [Et⊥ŷ + Et‖(cosθt x̂ + sinθt ẑ)] exp[ikt (z cosθt − x sinθt )], (A13)

H (D)
t = 1

ηD
[Et‖ŷ − Et⊥(cosθt x̂ + sinθt ẑ)] exp[ikt (z cosθt − x sinθt )], (A14)

where ηD =
√

μDμ0

εDε0
.

According to the boundary conditions at the interfaces z = −d, z = 0 and z = d:

E (A)
i (z = −d )|T + E (A)

r (z = −d )|T = E (B)
+ (z = −d )|T + E (B)

− (z = −d )|T
H (A)

i (z = −d )|T + H (A)
r (z = −d )|T = H (B)

+ (z = −d )|T + H (B)
− (z = −d )|T

E (B)
+ (z = 0)|T + E (B)

− (z = 0)|T = E (C)
+ (z = 0)|T + E (C)

− (z = 0)|T
(A15)

H (B)
+ (z = 0)|T + H (B)

− (z = 0)|T = H (C)
+ (z = 0)|T + H (C)

− (z = 0)|T
E (C)

+ (z = d )|T + E (C)
− (z = d )|T = E (D)

t (z = d )|T
H (C)

+ (z = d )|T + H (C)
− (z = d )|T = H (D)

t (z = d )|T ,

where |T represents tangential components of the electromagnetic fields.
Equating the tangential components of E and H (Ex, Ey, Hx, Hy) at the three structure interfaces results in a 12 × 12 system

of linear equations. For convenience, we write it in a matrix form, as⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −eiδBi RB1e−iδB1 RB2e−iδB2 −RB1eiδB1 −RB2eiδB2 0 0 0 0 0 0

−eiδBi 0 ie−iδB1 −ie−iδB2 ieiδB1 −ieiδB2 0 0 0 0 0 0

eiδBi 0 i ηA

ZB
RB1e−iδB1 −i ηA

ZB
RB2e−iδB2 −i ηA

ZB
RB1eiδB1 i ηA

ZB
RB2eiδB2 0 0 0 0 0 0

0 eiδBi ηA

ZB
e−iδB1 ηA

ZB
e−iδB2 ηA

ZB
eiδB1 ηA

ZB
eiδB2 0 0 0 0 0 0

0 0 cosθ (B)
+ cosθ (B)

− −cosθ (B)
+ −cosθ (B)

− −cosθ (C)
+ −cosθ (C)

− cos θ
(C)
+ cos θ

(C)
− 0 0

0 0 i −i i −i −i i −i i 0 0

0 0 −icosθ (B)
+

ZB

icosθ (B)
−

ZB

icosθ (B)
+

ZB

−icosθ (B)
−

ZB

icosθ (C)
+

ZC

−icosθ (C)
−

ZC

−icosθ (C)
+

ZC

icosθ (C)
−

ZC
0 0

0 0 1
ZB

1
ZB

1
ZB

1
ZB

− 1
ZC

− 1
ZC

− 1
ZC

− 1
ZC

0 0

0 0 0 0 0 0 RC1eiδC1 RC2eiδC2 −RC1e−iδC1 −RC2e−iδC2 0 −eiδCt

0 0 0 0 0 0 ieiδC1 −ieiδC2 ie−iδC1 −ie−iδC2 −eiδCt 0

0 0 0 0 0 0 −i ηD

ZC
RC1eiδC1 i ηD

ZC
RC2eiδC2 i ηD

ZC
RC1e−iδC1 −i ηD

ZC
RC2e−iδC2 eiδCt 0

0 0 0 0 0 0 ηD

ZC
eiδC1 ηD

ZC
eiδC2 ηD

ZC
e−iδC1 ηD

ZC
e−iδC2 0 −eiδCt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Er⊥
Er‖

E (B1)
+

E (B2)
+

E (B1)
−

E (B2)
−

E (C1)
+

E (C2)
+

E (C1)
−

E (C2)
−

Et⊥
Et‖

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ei‖ e−iδBi

Ei⊥e−iδBi

Ei⊥e−iδBi

Ei‖e−iδBi

0
0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A16)

where δBi = kid cosθi, δB1 = k(B)
+ d cosθ (B)

+ , δB2 = k(B)
− d cosθ (B)

− , δC1 = k(C)
+ d cosθ (C)

+ , δC2 = k(C)
− d cosθ (C)

− , δCt = kt d cosθt

RB1 = cosθ (B)
+

cosθi
, RB2 = cosθ (B)

−
cosθi

, RC1 = cosθ (C)
+

cosθi
, RC2 = cosθ (C)

−
cosθi

, and ki = ω
√

εAμA, kt = ω
√

εDμD.
Since the analytical solution of this system of 12 equations leads to complicated expressions for the field amplitudes, we

resort to numerical techniques to invert the matrix Eq. (A16). Note that by setting Ei⊥ = 0 in Eq. (A16) we have TM waves
while by setting Ei‖ = 0 we have TE waves, respectively.

From the solution of the above 12 × 12 system one can obtain the reflection and transmission coefficients for TM and TE
polarized incident waves as (

Et⊥
Et‖

)
=

(
t⊥⊥ t⊥‖
t‖⊥ t‖‖

)(
Ei⊥
Ei‖

)
= Tlin

(
Ei⊥
Ei‖

)
, (A17)

and (
Er⊥
Er‖

)
=

(
r⊥⊥ r⊥‖
r‖⊥ r‖‖

)(
Ei⊥
Ei‖

)
= Rlin

(
Ei⊥
Ei‖

)
. (A18)
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For analyzing the transmission and reflection properties of a PT -chiral system is advantageous to also have at hand the
transmission, T, and reflection, R, matrices for circularly polarized waves. They can be obtained from Eqs. (A17) and (A18) by
a change of the base vectors [27,29], as

Tcir = 1

2

(
(t‖‖ + t⊥⊥) + i(t‖⊥ − t⊥‖) (t‖‖ − t⊥⊥) − i(t‖⊥ + t⊥‖)
(t‖‖ − t⊥⊥) + i(t‖⊥ + t⊥‖) (t‖‖ + t⊥⊥) − i(t‖⊥ − t⊥‖)

)
(A19)

and

Rcir = 1

2

(
(r‖‖ − r⊥⊥) + i(r‖⊥ + r⊥‖) (r‖‖ + r⊥⊥) − i(r‖⊥ − r⊥‖)
(r‖‖ + r⊥⊥) + i(r‖⊥ − r⊥‖) (r‖‖ − r⊥⊥) − i(r‖⊥ + r⊥‖)

)
. (A20)

Tcir and Rcir connect the amplitudes of circularly polarized
incident waves and scattered waves:(

Et+
Et−

)
= Tcir

(
Ei+
Ei−

)
=

(
t++ t+−
t−+ t−−

)(
Ei+
Ei−

)
(A21)

and (
Er+
Er−

)
= Rcir

(
Ei+
Ei−

)
=

(
r++ r+−
r−+ r−−

)(
Ei+
Ei−

)
. (A22)

The reflection and transmission coefficients when the inci-
dent wave is from the right side of the slab shown in Fig. 9
can be obtained from the above analysis by exchanging the
material parameters in the two layers.

APPENDIX B: POLARIZATION ANALYSIS–STOKES
PARAMETERS

Taking into account the Stokes parameters, we calculated
the ellipticity angle (χ ) and the orientation angle of the
polarization ellipse (ψ) (see Fig. 10) of the wave transmitted
through the chiral structure. This approach is applied to any
electromagnetic wave of the form

E = [E⊥ŷ + E‖(cosθ x̂ + sinθ ẑ)] exp[i(q − ωt )], (B1)

where q = k(z cosθ − x sinθ ) and x̂, ŷ, ẑ the unit vectors.
For the wave of Eq. (10) the four Stokes parameters, which
describe completely the state of polarization [39], are given by

S0 = E⊥E∗
⊥ + E‖E∗

‖ , (B2a)

S1 = E⊥E∗
⊥ − E‖E∗

‖ , (B2b)

FIG. 10. The polarization ellipse for an elliptically polarized
plane wave with an ellipticity (χ ) and an orientation angle (ψ).

S2 = 2Re[E⊥E∗
‖ ], (B2c)

S3 = 2Im[E⊥E∗
‖ ], (B2d)

with ∗ denoting the complex conjugate. Through S parameters
the ellipticity angle is given by

tan χ = S3/S0

1 + [1 − (S3/S0)2]
1/2 , (−π/4 � χ � π/4),

(B3)
and the orientation angle of the polarization ellipse (ψ) (see
Fig. 10) is given by

tan 2ψ = S2

S1
, (0 � ψ � π ). (B4)

APPENDIX C: PT -SYMMETRIC PHASES
VERSUS CHIRALITY

In order to characterize further the impact of chirality on
the PT -symmetric phases of the chiral PT -symmetric system
investigated in this work, we calculate the eigenvalues of
scattering matrix as a function of (a) the real part of chirality
[see Fig. 11(a)] keeping constant the imaginary part and (b)
imaginary part of chirality [see Fig. 11(b)] keeping constant
the real part. In Fig. 11, we show that it is possible to control
the PT phases either with only the real or with only the
imaginary part of the chirality. This possibility gives us an
additional degree of freedom in controlling the different PT -
related phases and the associated EPs. Here, we assume the
same material parameters as in the text.

FIG. 11. The eigenvalues of S matrix as a function of
(a) real part of the chirality parameter (κ (−z) = −Re[κ] +
0.05i, κ (z) = Re[κ] + 0.05i) and (b) imaginary part of the chirality
(κ (−z) = −0.05 + Im[κ]i, κ (z) = 0.05 + Im[κ]i), for obliquely in-
cident waves at θi = 30◦ and for dimensionless frequency ωL

c = 13.0.

The material parameter of the two media are: ε(−z) = 4 − 0.6i,
ε(z) = 4 + 0.6i, μ(−z) = 1.5 − 0.15i, μ(z) = 1.5 + 0.15i.
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