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Supplementary Material 
 

1. Conditions for PT-symmetry in chiral metamaterials 

 

To find the conditions for PT-symmetry in systems with chiral response we first cast Maxwell’s equations iω∇ × =E B , 

iω∇ × = −H D  into an eigenproblem of the form H ω=F F , where H  is a pseudo-Hamiltonian tensor operator and F a 

generalized vector containing the fields. The constitutive relations are expressed according to Condon’s convention [38] 

as 0 ( )i cεε κ= +D E H  and 0 ( )i cµµ κ= −B H E , where ε, µ refer to the relative permittivity and permeability, respectively, κ 

is the chirality parameter and c the vacuum speed of light. If F is expressed in terms of E and H, the magneto-electric coupling 

in the constitutive relations does not allow for the problem to be cast as in the non-chiral case in [22], because the eigenvalue ω 

appears in the generalized Hamiltonian H  as well. Instead, if F is expressed in terms of B, D, a proper formulation is possible: 

 

H ω=
   
   
   

B B

D D
        (S1) 

 

with H  denoting a tensor operator that admits a Cartesian representation in terms of a 6×6 matrix: 
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    (S2) 

The tensors ( )Ω r , ( )ijΦ r represent Cartesian implementations of the 3-D curl operator: 
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, i,j = {1,2}     (S3b) 

 

The scalar quantities ( )ijφ r , which appear in ( )ijΦ r  and H explicitly, are functions of the material parameters, and read as  

( )
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(for simplicity we have omitted the r-dependence in ε, µ and κ). Οne can be convinced by performing the matrix multiplication 

shown in Eq. (S1) and taking into account Eqs (S2) to (S4) that this is a way of just rewriting Maxwell’s equations.   
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For the eigenvalues of H to be real, we require that H  is PT-symmetric [21,22], that is ( ) ( )
*

H , H ,t t= − −r r             (S5) 

Noting that ( )( ) ( )PT i iΩ = Ωr r  and ( )( ) ( ) ( )( )( ) ( ) ( )( )*
diag diagij ij ijPT i PT i iΦ = Ω φ = Ω φ −r r r r r , condition (S5) yields:  

( ) ( )*
ij ij −φ = φr r , i,j = {1,2}       (S6) 

where ( )( )diag ijφ r  is a diagonal 3×3 matrix consisting of the scalar quantities ( )ijφ r , as given by Eq. (S4). 

    This condition is necessary but not sufficient; for a PT-symmetric Hamiltonian with nondegenerate spectrum to have real 

eigenvalues, the eigenvectors F should be also PT-symmetric [21], i.e. PTF = F. The eigenvectors of H  appear as pairs of 

RCP/LCP waves, F+, F–, which are not PT-symmetric under the space reversal → −r r . However, because they share a 

common (degenerate) eigenvalue ω ( H ω+ +=F F  and H ω− −=F F ), this eigenvalue can be real if certain symmetries are 

preserved; for example, if the action of the PT-operator transforms the eigenvectors between RCP and LCP, i.e. if PTF+ = F– 

and PTF–= F+, then, for PT-symmetric H  (i.e. H HPT PT= ), we can act on both sides of H ω+ +=F F with the PT operator and 

transform this relation as
* *

H H H HPT PT PT PTω ω ω ω+ + + + + + − −= ⇒ = ⇒ = ⇒ =F F F F F F F F . The relation 

*
PT PTω ω+ +=F F  follows because the time reversal operator has the form of a matrix times the complex conjugation 

operator. Taking into account that H ω− −=F F , we conclude that
*ω ω= , i.e. ω is real. Real eigenvalues can be achieved, for 

example, in systems with a reduced space reversal x→x, y→y, z→-z, for waves propagating along the z-direction, as we have 

considered in the main manuscript. In such systems, the condition for H to be PT-symmetric is simplified as ( ) ( )*
ij ijz z−φ = φ  

and inspection of Eq. (S4) yields the result presented in the main paper: 

( ) ( )*
z zε ε= − , ( ) ( )*

z zµ µ= −  and ( ) ( )*
z zκ κ= − −      (S7) 

 

2. Analytical results for the double slab model  

 

    To find the reflection and transmission amplitudes of the double-slab system (which is surrounded by air), we assume that 

waves arrive at normal incidence from either side of the system and we solve Maxwell’s equations, applying the boundary 

conditions at each material interface. The waves propagate along the z-direction as shown in Fig. S1 and their polarization 

vector, which lies on the xy-plane, can be either linear or circular. To satisfy the PT-symmetry requirements (S7), we are 

interested in material parameters of certain spatial symmetry; however, we start with slabs of arbitrary properties, εi, µi, κi and 

Li, to obtain general expressions (the subscript i = {g, l} denotes the ‘gain’ and ‘loss’ regions respectively). Due to the two 

possible circular polarizations at each of the two sides – Right/Left Circularly Polarized (RCP/LCP or +/–) waves, the system 

can be described by four input and four output ports and hence by a 4×4 scattering matrix, consisting of eight reflection and 

eight transmission coefficients, {r, t}. Due to chirality there are two wavenumbers ( )0i i i ik k ε µ κ±
= ± in each region, the one 

(+) corresponding to RCP waves and the other (–) corresponding to LCP waves (k0 is the free space wavenumber).  

 
Figure S1: Schematic of the double slab model. The complex material parameters εi, µi and κi are the relative permittivity, the relative 

permeability and the chirality parameter, respectively, and the subscript i = {g, l} denotes whether they are located in the ‘gain’ or the ‘loss’ 

region. The parameters ni = (εiµi)
1/2 and ki are the corresponding refractive index and wavenumber. The amplitudes of the incident (b,c) and 

scattered (a,d) waves are shown, where the subscript +/– accounts for Right/Left Circularly Polarized (RCP/LCP or +/–) waves. Due to 

chirality there are two wavenumbers in each region, ki
+/ ki

–corresponding to RCP (+) / LCP (–) waves, respectively. 

( )l l lk n
c

ω
κ± = ±( )g g gk n

c

ω
κ± = ±
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The analytical results for Linearly Polarized and Circularly Polarized incident waves are listed below. The letter L/R in the 

subscript denotes incidence from ‘Left’ or ‘Right’ and the remaining two symbols denote the output and incident polarization. 

 

2.1 Scattering coefficients for Linearly Polarized (LP) waves: 

 

LP wave incident from LEFT (subscript L):  LP wave incident from RIGHT (subscript R): 
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r e
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− +
= −

+
    (S8) 

, 0=L yxr       , 0=R yxr  

 

, ,=L yy L xxt t , , ,= −L xy L yxt t , , ,=L yy L xxr r , , ,=L xy L yxr r   , ,=R yy R xxt t , , ,= −R xy R yxt t , , ,=R yy R xxr r , , ,=R xy R yxr r  

 

2.2 Scattering coefficients for Circularly Polarized (CP) waves: 

 

CP wave incident from LEFT (subscript L):  CP wave incident from RIGHT (subscript R): 
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( ), ,L L Lr r r−+ +−= �      ( ), ,R R Rr r r−+ +−= �  

  

, , , , 0+− −+ ++ −−= = = =L L L Lt t r r     , , , , 0+− −+ ++ −−= = = =R R R Rt t r r  

 

where: 

( ) ( )1 1 1 1
1 1 1 1g g g l l l
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g
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 = + + + − − + + −                      

     (S10) 
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The parameter i i iZ µ ε= , i = {g,l}, is the wave impedance, which is normalized to the free-space impedance 0 0 0Z µ ε= . 
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The terms A, B, CL, CR, DL, DR consist of the wave impedances Zg, Zl (both independent of chirality) and terms of the form 

0 0( ) ( ) 2g g g g g g g g g giL k k ik L n n ik L n
e e e

κ κ+ −+ + + −
= =  and 0 0( ) ( ) 2l l l l l l l l l liL k k ik L n n ik L n

e e e
κ κ+ −+ + + −= = . These terms do not contain κg or κl and 

hence the reflection coefficients are independent of chirality. On the other hand, the transmission coefficients consist of terms 

of the form 0 0 0( ) ( ) ( ) ( )g g l l g g g g l l l l g g l l g g l li L k L k ik L n L L n L ik L n L n ik L L
e e e e

κ κ κ κ± ±+ ± + ± + ± +
= = . Hence, although generally chirality-dependent, 

the transmission can be tuned independently from chirality if Lgκg+ Llκl = 0. In particular, Re(κ) is responsible for phase 

changes in t, while Im(κ) for amplitude changes (note that, while the sign of Im(n) accounts for gain or loss, the sign of Im(κ) 

expresses the difference in absorption between RCP/LCP waves, i.e. it does not imply gain). These conclusions are also evident 

in the calculated optical activity θ and ellipticity η [34]: 

 

Optical activity:   ( ) ( )( ) ( ) ( )( )0

1 1
arg arg 2 Re Re

2 2
g g l lt t k L Lθ θ κ κ++ −−= − ⇒ = +    (S11) 

Ellipticity:    
( ) ( )( )
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2 2
0

1 1

2 2

0
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sin sin

2 2 1 exp 4 Im Im

g g l l

g g l l

k L Lt t

t t k L L

κ κ
η η

κ κ
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  − + −    = ⇒ =     + + +     

 (S12) 

 

To summarize, the effect of chirality appears in transmission as Lgκg+ Llκl ≠ 0, with κg, κl complex in general, and does not 

affect the reflection, which behaves as if the system was non-chiral. A nonzero Re(Lgκg+ Llκl) results to t t++ −−= , but causes 

phase changes in ,t t++ −−  and hence nonzero optical activity θ. A nonzero Im(Lgκg+ Llκl) causes t t++ −−≠  and hence nonzero 

ellipticity η. In particular, for slabs of the same thickness Lg = Ll = L/2 (as in PT-symmetric systems) we find:  

 

( ) ( )( )0

1
Re Re

2
g lk Lθ κ κ= +  and 

( ) ( )( )
( ) ( )( )

0
1

0

1 exp 2 Im Im1
sin

2 1 exp 2 Im Im

g l

g l

k L

k L

κ κ
η

κ κ

−

  − +
  =   + + 

  

 

 

These formulas verify the results presented in the main manuscript. For example, for fully PT-symmetric systems where 
*

g lκ κ= − (as in Fig.2a, Fig.4a), ( ) ( )Re Re 0g lκ κ θ= − ⇒ = ; if *
g lκ κ= (as in Fig.2b, Fig.4b), then ( ) ( )Im Im 0g lκ κ η= − ⇒ = . 

Last, if 
g lκ κ= − , i.e. 

( ) ( )

( ) ( )

Re Re 0

0Im Im

g l

g l

κ κ θ

ηκ κ

 = − =
⇒ 

== −

. This case is referred in the main manuscript as ‘spatially balanced 

chirality’ and corresponds to the case where the system responds macroscopically as non-chiral, despite having local chirality, 

 

3. Alternative representations of the scattering matrix 

 

    As already mentioned, due to the two possible circular polarizations at each of the two sides of the double slab model, the 

system can be described by four input and four output ports and hence by a 4×4 scattering matrix S, consisting of eight 

reflection and eight transmission coefficients, {r, t}. Depending on the arrangement of the {r, t} elements on the 4×4 matrix, 

i.e. on the arrangement of the input and output ports, the S-matrix can be formulated in several ways. Hence, depending on each 

choice, the S-matrix may have different eigenvalues, which reveal different aspects of the scattering process. In our case, the 

main information we are concerned with is related to the PT properties of our system. In other words, we would like to know 

which one is the appropriate S-matrix formulation that will give us information about the position of the Exceptional Point. 

    Although different S-matrix formulations may yield different eigenvalues, they all share a common property; because they 

are rearrangements of the same set of matrix elements, they all have the same poles in the complex frequency plane. Hence, the 

system has a unique description in terms of its poles. The poles of a PT system have a very distinctive behavior; below the 

Exceptional Point they are all located in the lower imaginary plane and split into two branches above the Exceptional Point 

regardless of the S-matrix formulation [18]. Our analytical model allows us to perform analytic continuation in the complex 

plane and examine the poles of the S-matrix. In turn, this directly indicates the appropriate S-matrix formulation, the 

eigenvalues of which show the distinct regions of PT and broken PT-phase. Such a procedure was also followed in [18] in order 

to resolve the same issue in the non-chiral case. Here, our analytical model serves likewise as a means for identifying the 

appropriate representation, which can be then used in real experiments. Below we list some selected formulations and their 

corresponding eigenvalues: 
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with two eigenvalues ( )2

1,2

1
4

2
++ −−
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 

L R L Rs r r r r t t  

 
As mentioned earlier, the denominators in r, t do not depend on chirality and hence the S-matrix poles are expected to be 

identical to those of the non-chiral counterpart. Indeed, our simulations agree with this theoretical conclusion and therefore the 

last S-matrix formulation, S3, provides the most suitable eigenvalue set and is the one that we have used throughout this paper. 

The poles of all scattering matrices S1, S2 and S3 together with their eigenvalues are shown in Fig. S2 for the example shown in 

Fig. 2 in the main manuscript (also reproduced here in the bottom panels of Fig S2, for comparison). 

 
Figure S2: Poles and eigenvalues of the scattering matrix S. Here, the PT chiral system of Fig. 2 of the main manuscript is examined. The 

system has length L, n = 2±0.2i and chirality (a) κ = ±0.165+0.165i and (b) κ = 0.165±0.165i. The top row depicts the poles of the S-matrix 

and the eigenvalues of the S1, S2 and S3 representations are shown below. The eigenvalues of S1 change with chirality and those of S2 identify 

the Exceptional Point only partly. The eigenvalues of S3 do not depend on chirality and are therefore the most suitable eigenvalue set. 
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4. Generalized unitarity relation and experimental identification of Exceptional Point 
 

The analytical expressions for the generalized unitarity relation and the experimental criterion for locating the Exceptional 

Point correspond to the results introduced in [18], with the simple substitution T TT ++ −−→ , where 
2

T t++ ++≡  and 

2
T t−− −−≡ . In particular: 

    The experimental criterion for locating the Exceptional Point was found in [18] to follow from the break of unitarity of the S-

matrix eigenvalues. In our case, due to 
2
nonchiralt t t++ −− = , the eigenvalues of S3 are identical to those of its non-chiral 

counterpart and hence the conclusions for tnonchiral in [18] hold here for t t++ −− , i.e. the substitution nonchiralt t t++ −−→  

yields the respective conclusions for our chiral system. Hence, using the result of Eq. (17) in [18] and substituting  

T TT ++ −−→  we obtain: 

 

1
2

L RR R
T T++ −−

+
− =  

 

where 
2

L LR r≡  and 
2

R RR r≡ . 

    The generalized unitarity relation was shown in [18] to follow from the fact that DetM = 1, where M is the transfer matrix, 

and the condition M
-1

 = M*(ω*) which is a direct consequence of the imposed PT-symmetry conditions [15]. In our case, the 

transfer matrix M3 that corresponds to S3 can be easily shown to satisfy DetM3 = 1 as well. Using this result in combination with 

the demand for M3
-1

 = M3*(ω*), after some calculations we find: 

 

1 L RT T R R++ −− − =  

 

This result is equivalent to the result of Eq. (9) in [18] with the substitution  T TT ++ −−→ . 

 

5. Configuration of realistic Chiral Metamaterial (CMM) and numerical calculations of scattering parameters 

 

The basic Chiral Metamaterial (CMM) block that has been used in our simulations consists of two metallic crosses twisted with 

respect to each other and embedded in a dielectric host of low index, nhost = 1.41. The two metallic crosses are made of gold, the 

permittivity of which is modeled by a Drude response: ε(ω) = ε∞ – ωp
2
/(ω

2
+iωγ), with ε∞ = 9.07, ωp = 2π×2159 THz and γ = 

2π×25 THz. To achieve the PT-CMM we introduce an imaginary part in nhost to model gain and we also tune the twist between 

the two crosses as an additional control on the achieved effective chirality. The unit cell of the CMM is periodically repeated on 

the xy-plane, forming an infinite metamaterial sheet of thickness w. All geometrical parameters are shown in Fig. S3. 

 
Figure S3: Unit cell of the CMM used in our simulations. Two metallic crosses are twisted with respect to each other and embedded in a 

dielectric host of low index, nhost = 1.41. The twist between the two crosses is used for external control on the achieved effective chirality. 

 

In the simulations we first excite the system with a circularly polarized wave from the left side and for each incident 

polarization (RCP/LCP or +/–) we measure the reflected and transmitted waves in the two polarizations as well, ending up with 

eight measurements. Then we repeat the same procedure for excitation from the right side and we calculate the 2×8 = 16 

scattering parameters rij, tij where i,j = {+, –}. After we arrange all rij, tij in the scattering matrix S3 we calculate its eigenvalues, 

which we plot in Fig. 4 and in this document. We also plot the scattered power Rij = |rij|
2
, Tij = |tij|

2
 and use t++, t-- to calculate the 

optical rotation θ and ellipticity η. 
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6. Expected results for system under perfect PT-conditions and further examples 
 

Because there is a slight discrepancy between conditions (1) and the retrieved parameters for our CMM and PT-CMM (see Fig. 

3 of the main manuscript), we have already pointed out that some deviation from the perfect PT-symmetric system is to be 

expected. In order to demonstrate that this deviation is quantitative only and to predict the behavior of the system under perfect 

PT-conditions, we use the numerically retrieved parameters εCMM, µCMM and κCMM and we artificially set εPT-CMM = (εCMM)*, µPT-

CMM = (µCMM)* and κPT-CMM = -(κCMM)*. Then we replace the actual CMM/PT-CMM structures with homogeneous slabs of the 

same effective parameters and solve the equivalent model of four homogeneous slabs analytically. In Fig. S4 we present these 

theoretical calculations and, for comparison, we repeat the numerical results presented in Fig.3,4a in the main manuscript. The 

tuning parameter ε" is scanned within the broader range [-2.5, 2.5], where the sign change means that the positions of the 

auxiliary gain/slab pair are interchanged. Because the effective parameters at the two outer slabs are not interchanged, we 

observe two asymmetric Exceptional Points, located at ε" = -1.74 and ε" = +0.88 (the shaded regions denote the broken PT-

phase). The results verify conditions (2) and demonstrate the existence of ATRs close to ε" = ±1. The theoretical results are 

shown in Fig. S4b (left panel) and the full-wave simulations of the actual configuration are shown in Fig. S4b (right panel). The 

agreement is excellent, despite the slight discrepancy between the retrieved parameters and the strict PT conditions (1). This 

can be visualized in the eigenvalues λ of the scattering matrix (top row) and the generalized unitarity relation (5) (dashed line in 

middle row), which are slightly modified in comparison to the ideal system. As for the chiral parameters, we have already 

mentioned that the PT-conditions impose θ = 0, but due to the non-perfect match of the chiral parameters there is a residual 

optical rotation θ. However, the positions of the Exceptional Point and the ATRs are in excellent agreement with the ideally 

expected. In order to examine the results of Fig. 4b in a similar manner we artificially set εPT-CMM = (εCMM)*, µPT-CMM = (µCMM)* 

and κPT-CMM = (κCMM)* and we solve the analytical model of four homogeneous slabs, which is shown in Fig. S4d (left panel). 

For comparison, in Fig. S4d (right panel) we repeat the numerical results of the actual configuration. Again the agreement is 

excellent and these calculations verify that the Exceptional Point is not affected by changes in chirality and hence, the PT-

symmetry aspect is independent of the chiral aspect, as predicted by our simple model.  

 

 
Figure S4: Comparison between perfect PT-conditions (‘theoretical’) and realistically achieved (‘numerical’) with the chosen metamaterial 

for (a),(b) κPT-CMM = -(κCMM)* and (c),(d) κPT-CMM = (κCMM)*. (a), (c) Retrieved parameters. (b), (d) Analytical (left panel) and numerical (right 

panel) calculations. The results in (a),(c) and right panels of (b),(d) correspond to the results presented in Fig. 3 and 4. 

 

In order to demonstrate the basic principles of our analysis, the examples of the realistic structures presented in the main paper 

were chosen so as to satisfy conditions (1) primarily for ε and µ. This choice provided us with relatively weak chiral effects as 

compared to the advanced capabilities of chiral metamaterials. To demonstrate that our choice does not imply a limitation on 

the chiral effects, here we use the same system to satisfy PT conditions at different frequencies, where the chirality is stronger. 

Because in this work we are not interested in optimized configurations, the deviation from conditions (1) at the chosen 

frequencies is allowed to be slightly larger. However, Exceptional Points and ATRs are still present and are now accompanied 

by strong chiral effects. In Fig. S5 we demonstrate three such cases. We use the CMM and PT-CMM of the main manuscript 

and move to a new operation frequency, which is marked with a vertical dotted line in Fig. S5b (for each case individually). To 

control the chiral effects we tune the twist between the crosses. The notation for the twist is shown in Fig. S5a and a positive 
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θCMM/ θPT-CMM corresponds to a clockwise mutual twist, where the twist direction refers to the cross located closest to the side of 

the observer. The results for each corresponding case are shown in Fig. S5c. Starting with the exact configuration of Fig. S4a,b 

(θCMM = -30deg. / θPT-CMM +30deg.) but changing the operation frequency to 166THz where the effective chirality is stronger, 

we achieve θ = 16deg. and η = -14deg. (left panels in Fig. S5b,c). If we twist the crosses only of PT-CMM in the opposite 

direction (θCMM = -30deg. / θPT-CMM -30deg.) we achieve θ = -19deg. and η = 0 (middle panels in Fig. S5b,c) at a slightly higher 

frequency. There we achieve enhanced Re(κ), while cancelling Im(κ). Finally, in the latter configuration, by twisting the crosses 

of both CMM and PT-CMM in the opposite direction (θCMM = +30deg. / θPT-CMM +30deg.) we reverse the sign of optical 

rotation, thus achieving θ = +19deg. and η = 0  (right panels in Fig. S5b,c). In this case we manage to reverse the sign of the 

effective chirality κ and, thus reversing the sign of Re(κ), while maintaining the cancellation of Im(κ). For the two latter cases, 

in particular, (Fig. S5b,c, middle and right panel) the simulations verify that the sign of optical rotation can be tuned without 

affecting the Exceptional Point and the ATRs. These results support our finding that the chirality can be tailored independently 

of permittivity and permeability, thus enabling versatile control of the system's properties. 

 

 
 
Figure S5: Examples of strong chiral response and demonstration of external control. We use the CMM and PT-CMM of the main 

manuscript and change only the twist between the crosses as depicted in (a) and the operation frequency, which is marked as a vertical dotted 

line in (b), for each individual case. (b) Retrieved parameters and (c) numerical calculations for the three cases shown on top of each panel. 

 

7. Tuning the ATRs 

 

The presented realistic examples were chosen for demonstration and do not necessarily imply the need for large amounts of 

gain (ε”~1). As an example, below we present a (non-optimized) modified version of our system shown in Fig.4, in which we 

scan the length of the auxiliary gain/loss slab pair to show that it is possible to observe similar features with significantly less 

gain. The parameters are all the same as in Fig. 4 and the operation point presented in the main paper is marked here with the 

vertical dashed line (corresponding to slabs of 500nm length). 

 

 
 
Figure S6: ATRs as function of the gain/loss (ε”) and length of the auxiliary slab pair. The blue (red) lines correspond to ATRs for the RR 

(RL) reflectance and the regions where no ATRs are possible are marked with the vertical shaded zones. The trace of the Exceptional Point is 

marked with the dotted line and the broken PT-phase is designated with the gray area. The left panel shows the 450nm-550nm range in detail, 

while the right panel extends the scan up to 1750nm to show that, with increasing slab length, even less gain is required. 


