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Theory of light propagation in strongly modulated photonic crystals:
Refractionlike behavior in the vicinity of the photonic band gap
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Although light propagation in weakly modulated photonic crystals is basically similar to propagation in a
diffraction grating in which conventional refractive index loses its meaning, we demonstrate that light propa-
gation in strongly modulated two-dimensioriaD)/3D photonic crystals becomes refractionlike in the vicinity
of the photonic bandgap. Such a crystal behaves as a material having an effective refractive index controllable
by the band structure. This situation is analogous to the effective-mass approximation in electron-band theory.
By utilizing this phenomenon, negatively refractive material can be realized, which has interesting optical
properties such as mirror-image refraction.

I. INTRODUCTION II. ANOMALOUS LIGHT PROPAGATION IN PHOTONIC
CRYSTALS?

A photonic crystal is a structure whose refractive index Unusual light propagation in photonic crystals has been
is periodically modulated, and the resultant photonic disperfemarked upon by several authGrS Lin et al. reported that
sion exhibits a band nature analogous to the electronic bari@fraction angle becomes anomalous near the barfijap.
structure in a solid. The one-dimensionélD) version sakaet al. reported that, under certain conditions, the light
of a photonic crystal has long been known as a multilayelPropagation direction in photonic crystals becomes very sen-
reflector, but 2D/3D photonic crystals have only recentlySitive to the incident angle and wavelength, and large beam
started to attract attention after the appearance of a predictiofe€iNd is_ observed, which they call superprism
that photonic insulators can be developed by photonié)henomer!oﬁ.However, almo_st the same_phenomena_ were
crystals® Since then, photonic crystals have become a majoﬁbserved in 1D and 2D. gr:?mng wave guideand the dis- .
subject of today’s photonic engineering resedr@o far, inction between behavior in photonic crystals and that in

most of the concern has been focused on their potential rating wave guides is not clear. In addition to that, there

. . have been some theoretical reports that predict unusual re-
photonic insulators. However, they can also be photomcf P P

q h d i< d ined by their b éactive index for photonic crystafs’
conductors whose conductance Is determined Dy their band e egsential explanation of these phenomena should lie

;tructu_re‘f_ In photonic crystals, light travels as Bloch waves, j the photonic band structure because the direction of light
in a similar way to plane waves in continuous material.,ropagation inside the photonic crystal is determined by the
Bloch waves travel through crystals with a definite propagapquifrequency surface of the photonic bands in these
tion direction despite the presence of scattering, but theigtryctures® Although this feature of photonic crystals has
propagation is complicated because it is influenced by th@een frequently discussed, there have been very few reports
band structure. about quantitative comparison between theory and experi-
In this paper, we investigate the situation shown in Fig. 1ment so fatt! Considering this feature, it might be possible
A light beam is traveling through different media. If the me- to reconstruct the photonic band structure from measure-
dium is a dielectric material, then we observe conventionaments of the light propagation inside the photonic crystal.
refraction phenomenon. If the medium is a diffraction grat-We recently demonstrated such an experiment for
ing, then we observe diffraction phenomenon. Then, wha8D Si/SiO, photonic crystals that were fabricated by auto-
kind of light propagation phenomena would be observed ifcloning technology? and a very detailed photonic band
the medium is a photonic crystal? There have been somgiructure was successfully obtained by the measuretient.
works related to this issue in the literature, but systematid his experiment directly shows that the light propagation is
and consistent way of understanding is still lacking. There-
fore, we will now start from the simple cases of a dielectric . j
material and a diffraction grating and then examine photonic medium1 medium?2

crystals with weak and strong periodic modulation effects, in /
order to obtain a systematic view for propagation in periodic /

structures and, in particular, photonic crystals. We will
clarify features of light propagation in photonic crystals, and plane or
show how a strongly modulated photonic crystal exhibits plane wave | Bloch wave
remarkably interesting propagation characteristics which can
be understood as refractionlike phenomenon in standard geo- FIG. 1. Schematic diagram of light propagation phenomenon
metrical optics with unusual refractive index. through different media.
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indeed determined by the photonic band structure. This Lin et al. investigated the lowest band of a 2D photonic
means that, if we want to investigate the light propagation ircrystal near its first gap, and argued that the refractive index
photonic crystals, what we have to do is just to calculate thés modified from the low-frequency limit value near the gap
corresponding photonic band structure. However, photonibecause the slope of the dispersion curve is redficgds
band structures are fairly complicated and it is thus not easgffect is not significantly large because the control range of
to understand the light propagation phenomena in photonimdex is limited within refractive indices of materials. The
crystals in qualitative terms. Moreover, the relation betweerpresent photonic crystal effect simply arises as a modifica-
the light propagation in photonic crystals and that in convention of the mixing ratio of index values, similar to the way in
tional dielectric materials or gratings has yet to be clearlywhich the effective refractive index of a conventional slab
demonstrated. We believe that a simpler way of understandwave guide is derived’ Furthermore, their argument did not
ing light propagation in photonic crystals is possible andshow whether the index they deduced could be meaningful
should be established, which will clarify the difference be-outside the low-frequency limiwe will show later that such
tween behavior in photonic crystals and conventional refracindex is generally meaningless except under a certain condi-
tion or diffraction phenomena. tion), and it is not clear how this index is related to propa-
As mentioned above, light propagation in photonic crys-gation direction.
tals is represented by Bloch waves. Bloch waves have a defi- To investigate the phase index of periodic structures out-
nite propagation direction in spite of strong scattering by theside the low-frequency limit, we must first consider the
periodic structure. This character leads us to consider a getvand-folding effect. To see this, we plot a photonic band
metrical optic approach to understand the propagation in itdiagram of a multilayef1D photonic crystalstructure as in
In conventional geometrical optics in dielectric materials,Fig. 2@). If we simply use the textbook formute= ck/ w for
light propagation—as shown in Fig. 1—is described by thethe phase refractive index, we obtain the result shown in Fig.
phase refractive index and Snell’s law. Therefore, in order t®(b). The resultant phase index exhibits very unusual behav-
pursue geometrical approaches for photonic crystals, we willor as can be seen in the figure. Dowliegal. used essen-
examine the concept of phase refractive index for photonitially the same argument to predict an ultrasmall index for
crystals. photonic crystal§.This effect is due to the reduction of wave
The phase refractive index of photonic crystals has beemectork near the zone center as a result of the band folding.
discussed by several authors in the long wavelengtiHowever, this argument leads to an ultrasnmedlven for an
limit.24~1® They have homogenized the periodic structuresempty lattice with the same crystal structure. Figuf® & a
and deduced an appropriate phase index in the lowband diagram of a 1D photonic crystal with a infinitely small
frequency limit. However, such a result cannot be extendethdex modulation. The corresponding phase index is shown
to higher frequencies of which wavelength becomes compan Fig. 2d). We know that light propagation in such an
rable to, or smaller than, the lattice period. Since most oempty-lattice photonic crystdlat least when its frequency
interesting phenomena, including unusual beam propagatiodpes not satisfy the Bragg conditjoshould be normal; how-
occur outside the low-frequency limit, we are not satisfiedever, this model still predicts abnormal phase index. This
with this homogenization method to understand the lightapparent contradiction shows that the deduced smdbes
propagation in photonic crystals. not posses real meaning and that the band folding itself does
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T (@) rohderiwass (b) under certain conditionsk is. very close to the olrigin, whigh
= ' ~ leads to very small phase index. However, this _phasg mqiex
/:/ /r- cannot be used to express the light propagation direction
] | ky because the propagation directi@ndicated by the arropis
\',\ \\ Na not parallel to thek vector. In other words, this index is

almost meaningless in terms of the light propagation prob-
lem. This directly demonstrates why the previous models
including Dowling’$*° are insufficient to describe the refrac-

tion phenomena. To analyze propagation phenomena, we

Q ky have to examine the curvature of EFS.
A

excited wave

Next, look at point D, which is an intersecting point of
two circles. This point is a kind of singular pointskrspace.
At such a point, the propagating direction becomes unde-
fined, and generally anticrossing occurs between intersecting
circles. Therefore, the propagation direction switches from
one circle to the other in the vicinity of this point. That is,
when we vary the incident angle or wavelength in the vicin-

not lead to unusual beam propagation. This contradictiofty Of this point, the beam propagation direction changes
arises mainly because we have only considekeh the ~ Very rapidly. If we carefully choose the wavelength and in-
above analysis. We must also consider the group velocit§ident angle to excite the vicinity of this intersecting point,
vector to study beam propagation in photonic crystals. W he beam propagation direction becomes very sensitive to the

thus need to investigate the equifrequency surfes of  incident angle and wavelength. This is the origin of the large
the photonic band structure. beam steering observed in the grating wave guide. This is a

general phenomenon, which occurs at singular pointk in
space, thus we call it singular point diffraction. Conical
refractiort’ in anisotropic media apparently has the same ori-
gin as singular point diffraction. The similar conical singu-
In this section, we reexamine light propagation in dielec-larity has also been discussed in the electron band theory in
tric materials and diffraction gratings by using EFS plots.the case of weak periodic modulati&hin addition to that, to
Firstly, we show a very simple example of EFS analysis inbe precise, a gap opens up at such singular points, and we
Fig. 3@, which describes a light incident problem from air will discuss its influence in the next section.
to a dielectric material. A circle in the figure is an EFS of the From these discussions, it is now clear that we cannot
photonic band of a dielectric, namely=ck/n. Thek vec-  define a phase index for a grating in terms of Snell’s law. If
tor in the dielectric medium is determined by the continuitywe define a phase index, the index is strongly dependent on
of tangential components of thevector across the interface, the incident angle ok-vector angle. Therefore, Snell’'s law
and light always propagates parallel to therector in this  loses its meaning. This means that the discussed phenomena
case. This is an EFS expression of conventional refractioin a grating cannot be understood within a refraction picture,
phenomenon, and this plot is a graphical representation gfnd must be understood as diffraction.
Snell's law ink space

A r>\

FIG. 3. (@) EFS plot for light incident problem from air to a
dielectric material(b) EFS plot for a diffraction grating.

Ill. LIGHT PROPAGATION IN DIELECTRIC MATERIALS
AND DIFFRACTION GRATINGS

n,sinfé,=n,sinég,. (D) IV. LIGHT PROPAGATION IN WEAKLY MODULATED
PHOTONIC CRYSTALS
In Fig. 3b), we depict light propagation in a diffraction
grating with a period ofl. In this case, equifrequency circles
are repeated along the periodic axis due to the grating’s p

We now move on to the case for photonic crystals. First,
dve examine a 2D photonic crystal with a weak periodic

riodicity, and thek-conservation rule has to be generalized tomOdUIaygon effect. Hereafter, we use a plane-wave expansion
satisfy the periodic boundary condition. As a result of this,M€thod,” to calculate a photonic band diagram and EFS, in

applying thek conservation rule, we see that more than oneVhich Bloch waves are expanded by approximately 1000

nonidentical beams can be excited in a grating. In the figure?!@ne waves. Frequency is normalizeduws/2zrc (a is the
wave A (on a circle centered at the originorresponds to a |atticé constant We examine mainly TE modegnagnetic

transmitted wave and wave @n a circle centered at a re- f1€ld lies perpendicular to the 2D planef the structure, but
ciprocal lattice pointis a diffracted wave. This is nothing the result obtained in this paper is not specific to TE modes.

but beam decomposition by a diffraction grating. Note that 1€ EFS of a hexagonal 2D photonic crystal with a van-
the light propagation direction is not parallel to theector  iShingly small index modulation is plotted in Fig(a4. The
for a diffracted wave, but it is oriented normal to the dif- EFS in the first Brillouin zone is expanded to the outer re-

fracted wave circle. This is a graphical representation of th&iProcal space. The EFS consists of repeated circles reflect-
formula for a diffraction grating ing the 2D hexagonal periodicity, by the same mechanism as

that in a 1D diffraction grating. If a plane wave is launched
mr=d(sing,+sin6,). 2) to this photonic crystal from air at a certain incident angle,
several phenomena are expected from this figure. First, a
Other than beam decomposition, a few points can bdight beam is decomposed into more than one nonidentical
drawn from this figure. At point Cthis point can be excited waves. In the situation in Fig.(d), two waves A and B are
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incident wave | /Tox) (@) incidentwave ! /Toc) (b) near the intersecting points although the qverall structure is
RN |ky | ! \D : |kV much the same. The effect of gap opening is that some of the
extoawave | G B rurm— i diffracted waves are not exqted due to this gap. In other
i’ |/ = : words, we can selectively pick up or exclude some of dif-
| | fracted waves. This mechanism can be applied to exclude a
Q “J><::I> transmitted wave and excite a diffracted wave only, as illus-
L 7 trated in Fig. 4c). Figure 4b) shows that, &-conservation
- , ‘;\ " line is passing through a small gap formed around khe
Q point and it intersects with a circl@otted centered at the
Ly I/ g origin. This circle represents@=0 plane wave correspond-
e ; | ing to a transmitted wave. In this small gap region, a trans-
A | N I mitted wave/e.g., wave A in Fig. )] becomes evanescent,
S == \ : and thus only a diffracted wave is excited. Normally, the

greatly from that of conventional refraction in a dielectric
material, and the propagation direction of a diffracted wave
can be very different from that of conventional refraction.
So, excluding the transmitted wave, the situation itself may
FIG. 4. (a) Schematic EFS plot for a hexagonal 2D photonic Seem as if the light beam is beingfractedin a very strange
crystal with a vanishingly small index modulation. The first Bril- way. However, this is not a correct view. Such a situation
louin zone(BZ) is shown as a hexagotb) EFS plot for a hexago- can only be realized at certain incident angles when the
nal 2D photonic crystal with finite index modulation. This EFS is transmitted wave falls into a gap. Otherwise, conventional
calculated for TE mode in a 2D hexagonal GaAs=3.6) air-hole  refraction or diffraction should occur. This is obvious from
photonic crystal at»=0.35 which is far from the gaps, but this type the EFS shape in Fig(d) that is almost the same as the EFS
of EFS is general for photonic crystals at frequencies far from theyithout gaps shown in Fig.(d) except the vicinity of the
gaps or photonic crystals with a small index modulati@».Sche- intersecting points. Therefore, we still cannot define a refrac-
matic of anomalous diffraction near the singular point. tive index for such a situation. This discussion of the gap

excited. Wave A corresponds to a transmitted wave, ana)p(::‘rnlng also a}ppllter? for a 1'3. gra(t:;_ng. . hat h
wave B is a diffracted wave. Second, the propagation direc-h 0 S.“Trzn?rl'.zit € preci ng |scuk5|5|on, dWI 6; (;Neh ?ve
tion is apparently not parallel to thevector for diffracted shown IS that fight propagation in weakly modulated photo-
waves. The propagation direction is oriented to the grouﬁ‘ o ;
velocity vectorvy,=gradew which is normal to the EFS. decomposmqn and Iar_ge bea_lm steenng observgd are_due_ to
Third, the propagation angle is very sensitive to the inciden he band folding and smgu!armes at the Intersecting points in
angle and wavelength if the launched beam excites the wav space. The anomalous light propagation reporte_d for pho-
onic crystals, for example the superprism effect, is easy to

near intersecting pointe.g., point g, which leads to large gnderstand within this picture. Therefore, the light propaga-

\ . Gap propagation direction of a transmitted wave does not differ
£
A

beam steering. This is the origin of the superprism effect a ; : X
reported in Ref. 7. Fourth, in some regions of the EFS nea on in such photonic crystals cannot be analyzed in terms of

the I' point, k vector becomes very small and it leads to athe phase refractive index, in the way that conventional re-

very small index value. But such an index is not meaningfulfraCtlon in a dielectric can.

by the same reason as for a grating. As readers already may

have noticed, the situation as a whole is similar to that for aV- LIGHT PROPAGATION IN STRONGLY MODULATED
grating. The anomalous beam propagation in photonic crys- PHOTONIC CRYSTALS

tals can be explained by the mechanism outlined above for a \ypnat then happens when the periodic modulation be-

diffraction grating. (?on.f,equently, we still cannot define acomes large? We know that propagation is still governed by
proper phase refractive index for a weakly modulated photogeg anck conservation across the interface, but the situation
nic crystal which precisely reflects the light propagation. s now qualitatively different from the weakly modulated
In the above discussion, we investigated the effect of bandne Although the gaps influence occurs only near the singu-
folding for light propagation, which is mostly sufficient to |4, point in the former case, the gap opening now comes to

understand gratinglike diffraction phenomena. If, howeveryominate the overall EES shape. This breaks up the grating-
the periodic modulation increases, another effect needs to Qe picture in Sec. IV, which we will show in this section.

taken into account; the gap appears in EFS at the intersecting g|och modes in photonic crystals are expressed as a mix-

points. This is the seed for the photonic band gap. If Weye of transmitted plane wave and diffracted waves having a
further enlarge the periodic modulation, this gap eventuallyreciproca| vectors:

comes to dominate the whole kfspace and photonic band

gaps will emerge. For now, however, we still stay with rela- )

tively small index modulation, which is actually the case for = % Ceexfli(k+G)r]. 3

most of grating wave guides or weakly modulated photonic

crystals in which anomalous beam propagation was obk the preceding sections, we assumed that we can charac-
served. We plot an EFS of a 2D photonic crystal with a finiteterize excited waves as transmitted waves or as diffracted
but small periodic modulation effect in Fig(). Comparing  waves with a certai®. That is, we categorized Bloch waves
Fig. 4(b) to Fig. 4a), one can observe small gaps that appeain terms of their dominanG component since the degree of
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FIG. 5. (Color) Hexagonal(a) and squaréb)
w=0.26 2D GaAs air-hole photonic crystalsvith a hole

g diameter of 0.@,) and the resulting EFS’s at sev-
1stBZ @ Eﬂ ]:@—l-l eral frequencies. Frequency is normalized as
@ = & ©a27C. wgya=0.48 for (a) and wga=0.34 for
o 8 (b) wherewy,,is a gap edge frequency.
el Al
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mixing is not strong. However, excited waves in strongly To examine this, we plot EFS of 2D hexagonal and square
modulated photonic crystals should be a strong mixture ofSaAs air-hole photonic crystalévith a hole diameter of
many diffracted wave components with differgat In such  0.7a) at several frequencies near one of the band gaps in Fig.
cases, the light propagation angle does not follow the fors. In both cases, the EFS shape becomes rounded as the
mula for a grating diffractiofEq. (2)]. In general, EFS can- frequency approaches to the band gap. This is a rather gen-
not be decomposed into a simple ensemble of circles, whickral effect for periodic modulation. The Fermi surfd&dS
excludes a simple gratinglike description or refractionlikeof the electronic band structure for a sglaf metal exhibits
description. Seemingly in such cases, the situation can onlg similar starlike shape reflecting the symmetry of the crys-
be characterized as chaotic, and a simple qualitative behavidal, which is sometimes referred to as a “monster.” As is
cannot be extracted. well known in solid-state physics, the crystal effect always

K FIG. 6. (Color) (a) EFS plot of TE modes in a
1stBZ \ 2D GaAs pillar hexagonal photonic crystéi,

AN =3.6,n,=1, 2r=0.7a) at w=0.56- 0.635(from

ky outer to inney. The colors represent frequency

indicated in(c). The first BZ of a hexagonal lat-

1.0 tice and the symmetry points are also shoy).
g ' 0T T e Refraction angle versus incident angle at
= =0.575 and 0.61(c) Effective refractive index
k=] e E5 as a function of the angle of tHevector at vari-
@ 05 £ 0.645 ous frequencies.
©-30 x B4
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= D.634
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round out the monster's sharp cornétsThis can be ex- 0.8
plained by the fact that the mixing among differéatcom-
ponents becomes more pronounced near the bandgap energy
around symmetry points in the reciprocal space, which even-
tually pushes out the sharp corners. This tells that when the 05 | Vi
periodic modulation effect is not large, the EFS exhibits gen-
erally a starlike shape consisting of arcs belonging to dif-
fracted waves; but when it becomes strong, the EFS shape £ °°
becomes circular or spherical near the gap.
We will now investigate this effect in more detail by ex-
amining TE modes of a 2D hexagonal GaAs pillar photonic
crystal (with a pillar diameter of 0.&) in air. Figure &a) L~
shows the EFS for this 2D photonic crystal ab 0 o o2 ood 00 = "
=0.56-0.635. Asw approaches 0.635 that corresponds to ®
one of the gap frequ_enueua(l“g), the _shape of EFS be- FIG. 7. (a) Effective index versus frequency of TE modes of a
comes rounded an_d finally become_s circular. In the case Yp Gaas pillar hexagonal photonic crystéh,=3.6, n,=1, 2r
Fig. 6a), the gap width aroune(I's) is very small, but this  _g 7,) The frequency range where the index becomes non-well-
does not mean the periodic modulation effect is small. Ingefined is indicated by the broken ling) Photonic band structure
fact, the modulation effect is significantly large as seen in thef the same photonic crystal.
figure. This means that the gap width itself is generally not ) o )
directly related to the strength of the periodic modulation Although we have pointed out similarity to conventional
effect but the periodic modulation effeghonster rounding refract!on, the_re is a striking dlﬁerence frqm conventlor)al
. . . refraction, which we have not pointed out in the preceding
'S most pronounced near the gap frequehn_ylung a gap rparagraph. Note that as increases up ta=0.635 the ra-
with very small gap width: In such a case, it might be betteryi,q "ot the monster shrinks. Considering=grad, this
referred as symmetry point frequencyVe will later exam-  means that propagation direction is inward for this monster,
ine the strength of the monster rounding for various photonighough it is always outward for a conventional dielectric.
crystals having different gap width. This results in a negative propagation angle for all incident
From the shape of EFS, we can deduce the propagatiosingles as already shown in Figh§ which leads to a nega-
angle using the relation,=grad.w. We calculated the rela- tive effective index. This unusual negative refraction is a
tion between the incident and propagation angles dor direct consequence that the gap opening dominates the over-
=0.61 andw=0.575 as shown in Fig.(6). Though the all EFS structure. In contrast to Fig(} where the EFS can
propagation angle ab=0.575 is complicated as a result of be approximated by the EFS of an empty lattice, we observe
the complicated shape of EFS, the curve is very simple athat this EFS in Fig. @ cannot be traced back to the EFS
w=0.61. At w=0.61, the EFS consists of a single circle. circles of an empty lattice. That is, a conventional transmit-
Note that the EFS plot looks similar to that of a conventionalted wave does not exist at any angle, and the excited Bloch
dielectric material as shown in Fig(e8. The excited wave is wave cannot be approximated by any single diffracted wave
determined by the circular EFS within the first Brillouin having specificG, but is a strong mixture of diffracted
zone, and the propagation angle thus should follow Snell’svaves.
law. This means that we can define an effective refractive Figure 7a) is a plot of effective index againss. In the
index ngg from the radius of the EFS using Snell's law. In range where the index is well defined, the effective index
Fig. 6b), we confirmed that the curve fas=0.61 follows  varies from—0.7 to 0.5. We compare this dependence to
Snell’'s law usingnes=—0.50. This curve shows that the the photonic band diagram for this structure as shown in Fig.
propagation angle follows Snell's law at 6, 7(b). Notice that the sign of the effective index is reversed at
<arcsin(ng;/ng|), and no waves are excited in the photonic w=0.635 which corresponds to thgT'3) point in the band
crystal atf;,>arcsin{nes;/ng|), which corresponds to total in- structure. Band Jo>w(I'5)] has a positive index and band
ternal reflection for a dielectric material. Note that total in- 1l [w<w(I'3)] has a negative index. The same characteris-
ternal reflection does not occur when a light beam is incidentics are found for bands near(I',). Although the positive
from air to a conventional material. In this way, the light and negative index bands are almost touching in both of
propagation in this case is properly described by the effectivéhese cases, touching is not essential. We have confirmed
index derived by using Snell’s law, suggesting that the beanthat the effective index becomes well defined in the vicinity
propagation is refractionlike. of open gaps as well. This is trivial because the monster
We check the applicable range of this effective index.rounding generally occurs in the vicinity of gaps around
Figure Gc) shows the deduced effective index as a functionsymmetry points as mentioned earlier. We show another ex-
of the in-plane angle ok at various values ob. This graph  ample that is TM(electric field lies perpendicular to the 2D
indicates that the deduced index does not depend otk theplane photonic band diagram of a 2D GaAs air-hole photo-
angle in the range 0.590<0.645. This means that the de- nic crystal in Fig. 8a). In this case, band (lll) and band I
duced index is well defined over this range. This range cor{lV) near the open gap betweea(I';)[w(['5)] and
responds to 140 nm at 1.54m (the typical wavelength for (I',) [w(I',)] are well-defined positive and negative index
optical communication which is wide enough for consider- states, respectively. Figuré shows the effective index of
ing real applications. bands | and Il againsb.
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/_\Q photonic gap. A Bloch electron in a solid is generally very

‘ ‘ different from a free electron, but it becomes free-electron-
like near the bandgap or band minimum and the effective
mass approximation can be applied in such regions. In this
context, the present situation can be understood that a Bloch
photon comes to resemble a free photémat is, a plane
wave having an effective refractive index near the bandgap
despite of large scattering by the periodic lattice, that is, the
geometrical optic approach can work near the photonic band-
gap.

These results indicate that, if there is a substantially
‘ ‘ ‘ strong periodic modulation in a photonic crystal, it behaves
K 03 0.35 04 as a continuous isotropic material having an effective refrac-

® tive index at a certain frequency range near the band edge. In

FIG. 8. (a) Photonic band structure of TM modes for a 2D GaAs SUch cases, exotic light propagation phenomena inside the
air-hole hexagonal photonic crysi@,=3.6,n;=1, 2r=0.8a). (b) photonic crystal can be simply described by Snell's law us-
Effective index versus frequency. ing an effective refractive index. In contrast to the weakly

modulated case where the definition of refractive index is not

It is generally known that an air-hole-type 2D photonic meaningful, this effective refractive index has a clear corre-
crystal has a larger gap in TE modes, and a pillar type 20spondence to the true phase refractive index as far as the
photonic crystal has a larger gap in TM modes. We observéndex defined in Snell’s law is concerned. The sign and ab-
that the formation of well-defined effective index states hassolute value of the effective index can be artificially varied
the opposite tendency. The air-hole-type crystal prefers TMy frequency, crystal structure, and refractive indices of
modes and the pillar type crystal prefers TE motfeshich ~ composing materials; it is not limited by the range of the
is probably because available propagating bands do not exigtdices of the materials themselves. The effective index can
when the periodic modulation effect is strong for the casé€ negative or less than unity. The fundamental limit on this
optimized for wider gaps due to the efficient gap formation,effective index is|neg|<max(;,n,). Note that this effective
but such modes still exist for the case optimized for widerindex is not limited by the Hahin-Shtrikman bouRtihich
effective index region even when the periodic modulation isonly holds in the effective medium regime, corresponding to
strong. photonic crystals in the long-wavelength limit.

Concerning these characteristics, there is an interesting Although the monster rounding generally occurs in the
analogy with the electronic band in semiconductors, agicinity of any gaps, the strength of this rounding differs
shown in Fig. 9. In a semiconductor, a negative effectivefrom band to band. Some of the bands retain anisotropy
mass statéthe hole bangappears below the energy gap, andrather close to the band edge. For example, the lower band of
a positive effective mass statethe electron bandappears thel’, point(band V) in Fig. 8@) forms a surprisingly accu-
above the gap, which is quite similar to the manifestation ofrate hexagon in the vicinity of the bandgap. In such cases, a
effective index states in photonic crystals. This analogynormal effective index cannot be defined but light propaga-
makes sense if we note that the sign of effective mass ition phenomenon is interesting in itself. Due to its hexagonal
semiconductors and the sign of effective index in photonicshape, the beam propagation direction is frozen at either 0°
crystals are both derived from the band curvature. Furtheror 60° over a wide incident angle range. In other words, such
more, the effective mass approximation is only valid near theéd photonic crystal becomes a network of straight wave
bandgap in the electron band theory. This is similar to ouguides oriented towards its symmetry axes, and propagation
case where the effective index state is only valid near thén other directions is prohibited by a partial photonic Gap.

Such freezing of the propagation direction cannot be ex-
Photonic Crystals 04E Electronic Crystals plained by the model for weakly modulated photonic crystals
which we used in Sec. IV, where the EFS can be approxi-
Posili mated as a sum of circles. It only occurs for strongly modu-
i ositive-mass state . . :
Positive-index state (electron band) lated photonic crystals where EFS is a strong mixture of
many diffracted waves. This anisotropy of the effective in-
dex near the gap seems to resemble the anisotropy of effec-
Photonic bandgap Energy bandgap tive mass in semiconductors. In semiconductors, this anisot-
ropy originates in the anisotropy of the atomic orbitals which
compose a particular electron bafglich ass, p, or d or-
Negative-index state Negative-mass state bital). In the usual photonic crystal case, however, such an
(hole band) atomic-orbital-like charactét does not significantly influ-
ence the photonic band because of the weak confinement in
the lattice point(photonic atom Thus, the anisotropy is
mainly due to the character of the band itself determined by

FIG. 9. Analogy between effective mass approximation forthe crystal symmetry at least when the wavelength is com-
Bloch electron bands and effective index approximation for Blochparable to the lattice constant, which could be analyzed by
photon band. the group theoretical approaéh.
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Although the main concern of this paper is phase index,
here we would like to comment on the group refractive index
for these photonic crystals. In order to examine it, we have to
investigate the frequency dispersion of photonic crystals.
Apparently seen from the band diagram, the photonic crys-
tals we are discussing have a strong frequency dispersion, -
which significantly influences the group velocity index. Al- o =
though the complicated band curvature is indicating a com-
plicated group velocity, it can be reduced to a considerably
simple relation in the vicinity of the bandgap. This is easily
understood if one compares again the present situation with
that of electron bands in a solid, in which the band should
have a parabolic dispersion near the band edge. This para-
bolic dispersion does not result from the parabolic dispersion
of free electronsE=%2k?/2m, but is attributed to the fact
that the periodic modulation induces the energy gap in the
second-order perturbation. In the case of photonic crystals,
this can be approximately expressed as follows: 0.5

Normalized frequency
o
()]
T

w’— a)(2)~ nk? (4)

(wg is the band edge frequency, ands an expansion coef-
ficient), which can be reduced to K2

<
-
P

5 C 5 FIG. 10. Replotted version of the band diagram shown in Fig. 7
k*=wo+ ;k : (5) (b) as a function ofk?. Straight lines are guide to the eye for
indicating the parabolic character of bands near the singular points.
This shows that Bloch photons have an electronlike para-
bolic dispersion near the band edge(=2w,c/7) contains In this section we have shown that, the monster rounding
all information on the band near the gap within this context,generally occurs near the bandgap, and the effective index
and could be seen as an effectineassof Bloch photons becomes well defined in such regions, and the sign of the
because it represents a parabolather than a lineadisper-  indices differs between the upper and lower bands. Before
sion of bands. This leads to the following dispersion relationmoving on to a next section, we would like to point out that
of group indexng: this discussion can naturally be extended to 3D photonic
crystals and it is thus basically possible to control the 3D
ng=v/2k. (6) propagation of light. However, realization of such states in

A expression for the phase index dispersion is not simple?’D photonic crystals are more limited than in 2D photonic

but if we use a scaled frequeney = w— w, in analogy to crystals, since it requires the existence of full photonic band-

the electron band case, we will get the following another3&PS thaégare known to be more difficult to obtain in 3D
phase index dispersion: structures.

7

w= (,()0+ 2w0

n£,=Ck/w' =vlk= ng/2, (7) VI. NEGATIVE REFRACTION

which is S|mp|y related to the group |nde1>§ by a factor of The fact that we can realize an arbitrary refractive index
2 (due to the parabo"ciw This new expression of phase state leads to many possibilities for the control of |Ight
index is mostly useless in the present situation, but it couldropagation. The most interesting point is that this realizes
be meaningful when we discuss the light propagation benegative refraction, as illustrated in Fig.(®L This negative
tween different photonic crystals sharing a similar crystalrefraction leads to many anomalous light propagation phe-
structure in common. Some of readers might notice that therBomena. We show some examples: an imaging effeigt.
is some similarity to the nonparabolicity problem in the 11(b)] and an open cavity formatidiig. 11(c)]. In the latter
semiconductor heterostructures consisting of materials with
different effective mas$’ @
To see how this parabolic representation is relevant, we| Positive-index n
replot Fig. 7b) as w versusk? in Fig. 10. This shows that
bands near the band edges are very close to parabolic, ar
the expression&b) and(6) are relevant under such a regime.
A detailed discussion of frequency dispersion is beyond the
scope of this paper, but this already shows that althougt
Bloch photons propagate like free photons at fixed fre-
quency, as far as frequency dispersion is concerned they ex- FIG. 11. Schematic diagrams of light propagation in negatively-
hibit a unique parabolic dispersion which is quite differentrefractive photonic crystals(a) negative refraction(b) mirror-
from that of free photons. inverted imaging effect, angt) formation of an open cavity.
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We again point out the difference between this negative
refraction and the situation for a weakly modulated photonic
crystal shown in Fig. &). Although the propagation angle
can become negative at a certain incident angle in a weakly
modulated photonic crystal, this does not lead to real imag-
ing because negative refraction only occurs over a limited
incident angle range and even within this region light rays
emitted from the same point but traveling in the different
orientation do not converge to the same point.

In the bulk of this paper, we have discussed the light
B propagation using EFS plots; in other words we examined
L J the wavevector conservation across the interface. This treat-
ment is adequate for determining the propagation angle, but
it is not still clear to what extent such Bloch waves will be
excited by a plane wave incidence since we have not quan-
titatively discussed the amplitude continuity across the inter-
case, there exist many closed optical paths running across tifiece. In principle, this can be done by a proper handling of
four interfaces which form a kind of an open cavity despitethe amplitude connection between the allowed Bloch waves
the fact that there is no reflecting wall surrounding the cav-4n the photonic crystal and the outside plane waves consid-
ity. In the former case, light is emitted from a point source toering the effect of the periodic boundary condition in the
a negatively refractive photonic crystal. Within the conven-interface plane. This treatment was the same as that has been
tional paraxial-ray treatment, the refracted wave converges &stablished in election diffraction thedfy>° Instead of do-
another point in the photonic crystal. This means that object§!d this, we have numerically simulated electromagnetic
in the left-hand space produce real images in the right-han@ve propagatioriin TE mods in a hexagonal GaAs pho-
space. This imaging is fundamentally different from conven-{onic crystal by a 2D finite-difference time-domain met?fod_
tional imaging by a lens. Figure 12 schematically illustratesiSiNg @ real refractive index distribution profile of the peri-
two types of imaging. Imaging by a lens is described byOdIC structures. We used aperfec_tly m_atched-layer absorbing
Newton’s formula, in which the focal length is an important condition for the outer boundariés.Figure 13a) shows
parameter. Magnification depends on the relative distance dje9ative refraction where an angled Gaussian beam is inci-
an object from the lens and focus point. Therefore it only ent to the interface. The negative propagation angle ex-
produces a 2D image on the focal plane and does not pr&faCted from this result coincides with that is obta_lned f_rom
duce a 3D image. On the contrary, a negatively refractivé® EFS calculated by the plane wave expansion. Figure
photonic crystal produces a 3D imagé it is a 3D nega- 13(b) shows mirror-inverted imaging. A point source is lo-

tively refractive photonic crystalby the mirror-inversion Ccat€d in the conventional material, and focusing is clearly
transformation %Y.2)— (X.y, — B2) where B observed in the negative-index photonic crystal. These nu-

— absf;/ng), which is different from Newton’s formula. In merical calculations directly solved Maxwell equations in-
e H . . . . . . . . .
addition, the lens imaging has a definite principal axis, bu _Iudlng appropriate amplitude continuity without any simpli-

the present imaging has translational symmetry in the boun ication, and thus the_s_e results clearly demo_nstrate the
ary plane. In this sense, this imaging is rather close to imaggxperlmental observability of the phenomena discussed in
ing by a mirror. The apparent difference between a photoni(t,hIS paper.
crystal and a mirror is that the former produces a real image
but the latter only produces a virtual image. This unique
property is suggesting possibilities of 3D photographing by We have systematically analyzed the light propagation

use of negatively refractive photonic crystals. phenomena in periodic structures and photonic crystals with

Y, D=L, yIZ, -fIZ
&3, 2>&/Z,71Z, £/7) (b)

FIG. 12. Schematics of imaging by a negatively-refractive pho-
tonic crystal and imaging by a lens.

VII. SUMMARY

(a) (b) FIG. 13. (Colon Numerical
simulation of electromagnetic
wave propagation in negatively
refractive photonic crystals. Mag-
netic field (H,) distribution of TE
mode after X 10* steps of calcu-
lation. The lower half is a hexago-
nal photonic crystal with 100
X 57 unit cells. (a) A slightly
tilted Gaussian beam is launched
from air (np=1). (b) A point
source emitting atv=0.62 is lo-
cated in continuous material with
no=0.5.[If we replace it with air
(n=1.0), the lower half result
will merely be compressed verti-
cally.
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the help of the band theory and numerical simulations. Oufaw. Since such effective index is determined by the photo-
motivation is to examine whether light propagation in pho-nic band structure, it can be negative or less than unity,
tonic crystals can be understood by simple geometrical optigzvhich leads to unusual refraction phenomena including
analogies. First, we have examined the effect of the bandegative refraction. The basic mechanism is similar to the
folding that is directly related to the periodic boundary con-effective mass model in electron band theory. A Bloch pho-
dition of the structure. It has been shown that the propagatioton becomes free-photon-like in the vicinity of the bandgaps,
characteristics of diffraction gratings and weakly modulatedand can be considered to be refracting with an effective re-
photonic crystals are much alike and can be explained withirfractive index. Such effective index states only exist near the
a similar framework. This explains anomalous propagatiorphotonic bandgap, in a similar way to the effective mass
phenomena in grating waveguides and photonic crystalstates in a semiconductor. We have shown that negative in-
These studies have clarified that the light propagation irdex states lead to interesting propagation phenomena, such
these media is fundamentally different from conventional re-as imaging effect, which have been confirmed by numerical
fraction, and therefore we cannot define appropriate refracsimulation of electromagnetic wave propagation. These
tive index. unique properties of refracting Bloch photons have the po-

However, subsequent studies showed that the light propdential to drastically change the form of optical components.
gation in strongly modulated photonic crystals near the pho-
tonic bandgaps, in which the second effect—the gap
opening—dominates EFS shape, comes to resemble refrac-
tion phenomenon in a dielectric material even in the presence The author would like to acknowledge T. Nakahara, H.
of strong multiple diffraction. In these cases, we can definélaniyama, W. Lui, T. Yamanaka, Y. Yoshikuni, H. Kosaka,
effective phase refractive index to explain the propagatiorand S. Kawakami for helpful discussions, and T. Tamamura
inside the photonic crystal using the conventional Snell’sfor his encouragement throughout this work.
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