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We propose a novel method for generating both propagating and evanescent Bessel beams. To generate propa-
gating Bessel beams we propose using a pair of distributed Bragg reflectors (DBRs) with a resonant point
source on one side of the system. Those modes that couple with the localized modes supported by the DBR
system will be selectively transmitted. This is used to produce a single narrow band of transmission in « space
that, combined with the circular symmetry of the system, yields a propagating Bessel beam. We present nu-
merical simulations showing that a propagating Bessel beam with central spot size of ~0.5\, can be main-
tained for a distance in excess of 3000)\,. To generate evanescent Bessel beams we propose using transmission
of a resonant point source through a thin film. A transmission resonance is produced as a result of the multiple
scattering occurring between the interfaces. This narrow resonance combined with the circular symmetry of
the system corresponds to an evanescent Bessel beam. Because propagating modes are also transmitted, al-
though the evanescent transmission resonance is many orders of magnitude greater than the transmission for
the propagating modes, within a certain distance the propagating modes swamp the exponentially decaying
evanescent ones. Thus there is only a certain regime in which evanescent Bessel beams dominate. However,
within this regime the central spot size of the beam can be made significantly smaller than the wavelength of
light used. Thus evanescent Bessel beams may have technical application, in high-density recording for ex-
ample. We present numerical simulations showing that with a simple glass thin film an evanescent Bessel
beam with central spot size of ~0.34\, can be maintained for a distance of 0.14\,. By choice of different ma-
terial parameters, the central spot size can be made smaller still. © 2005 Optical Society of America
OCIS codes: 260.1960, 260.5740, 240.0310, 230.1480.
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1. INTRODUCTION

There exist solutions to Maxwell’s equations that repre-
sent beams with well-defined narrow beam radii that do
not undergo diffractive spreading. Such beams are known
as Bessel beams. They can be propagating or evanescent.

Bessel beams were first proposed by Durnin and
co-workers.!? They pointed out that the Helmholtz equa-
tion is satisfied by a monochromatic wave propagating in
the 2z direction with field amplitude ®(x,y,z;x)
=exp(ik,z)Jy(k,r), where k22+kr2=;<2, x2+y%=r?, and J, is
the zeroth-order Bessel function of the first kind. When
0<k,.<k this expression describes a propagating Bessel
beam that does not undergo diffractive spreading and
that has the same intensity distribution J,%(k,7) in every
plane normal to the z axis. Of course the solution is rig-
orously exact only in free space. In any physical realiza-
tion of a propagating Bessel beam, although diffractive
spreading is initially repressed, after a fixed propagation
distance the beam experiences a rapid drop-off in inten-
sity.

An ideal propagating Bessel beam is described by the
superposition of the set of plane waves with wave vectors
lying on the surface of a cone? as shown in Fig. 1. There
are a variety of methods for generating propagating
Bessel beams, ™ all of which approximately produce such
a superposition of plane waves, albeit limited by finite ap-
erture effects. Durnin and co-workers, for example, illu-
minate a circular slit with collimated light.1 Each point
on the slit ideally acts as a point source that a lens then
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transforms into a plane wave. The superposition of each
of these wave fields forms a propagating Bessel beam.
The half-width of the central peak of a Bessel beam is
approximately kr_l. Therefore by making %, larger, with
k,.<k, a narrower propagating Bessel beam can be pro-
duced. When £, > k the beam width can be made smaller
still, significantly smaller than the wavelength of light
used. However, in this regime the beam ceases to be
propagating and is evanescent. Evanescent Bessel beams
have been investigated theoretically by Ruschin and
Leizer.” With such beams we have a trade-off. On the one
hand, the beam can be made very narrow. However, the
field amplitude will decay exponentially. Evanescent
Bessel beams may still have technical applications since,
in contrast to a point source of radiation, in the ideal case
the cross section of an evanescent Bessel beam does not
deteriorate. Therefore the range is restricted only by the
practical limit of the sensitivity of the detector used.

2. GENERATING PROPAGATING BESSEL
BEAMS

To generate a propagating Bessel beam we consider a pair
of distributed Bragg reflectors (DBRs) with a central cav-
ity as shown in Fig. 2. The dielectric constants of the two
layers in each Bragg reflector are e; and g9, and each
Bragg reflector has N bilayers. The unit cell of the Bragg
stack is of thickness D and the first layer in the unit cell
is of thickness d. The cavity is of length d3 and has a di-
electric constant &3.

© 2005 Optical Society of America
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Fig. 1. Wave vectors lying on the surface of a cone.
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Fig. 2. Distributed Bragg reflectors with field decaying into
Bragg stacks and localized mode in the cavity.

We investigate the transmission of a point source
through the DBR structure. A small silver deposition
could be used to act as a resonant point source scattering
an incident beam to all wave vectors. Alternatively we
could embed a laser diode inside the cavity. The DBR ar-
rangement is then able to act as a filter that allows only
modes corresponding to a narrow band of k,<k to be
transmitted. The symmetry of the system within the
plane of stratification means that these modes are those
with wave vectors lying on the surface of a cone. There-
fore a propagating Bessel beam is generated.

Let us consider how this filtering of modes comes about.
Working at a particular frequency, we select &1, €5, D, and
d such that all the modes lie within a bandgap of each
Bragg reflector. As illustrated in Fig. 2 the DBR arrange-
ment can localize a mode within the cavity. Two condi-
tions are necessary for this. First the mode must lie
within the bandgap of the two Bragg reflectors so that the
field corresponding to this mode is decaying within each
of the Bragg reflectors. Second the cavity must be able to
support a propagating mode. For this latter condition to
be fulfilled at least half a wavelength must be able to “fit
into” ihe cavity. Therefore ds must be greater than
7\0/ 2 \“’8 3-

Figure 3(a) shows the narrow band of localized modes
when the cavity supports only one propagating mode.
Only those incident wave vectors that are degenerate
with these localized modes will be able to couple to them
and thus have their transmission through the DBR sys-
tem selectively enhanced. All other propagating modes
will be suppressed by the bandgap. As the cavity length
ds is increased beyond ),/ v’e: other propagating modes
can be supported within the cavity as shown in Fig. 3(b).
Incident wave vectors degenerate with these modes will
also be selectively transmitted across the DBR system.
This results in a transmitted wave field that no longer
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corresponds to a Bessel beam. Therefore we must be sure
to maintain the condition \y/Ves>ds>\y/2 \s’s:.

We now have two scenarios. In the first we imagine
that the cavity is of finite extent in the plane of the cavity.
For example, it might consist of a cylindrical cavity. If we
then tune to one of the modes of this cavity and ensure
that the radiative losses through the ends are small, our
source will fill the mode with energy, and the range of the
Bessel beam will be predicted by the lateral extent of the
mode ~L, as shown in Fig. 4. Figure 5(a) shows the inten-
sity of the mode with radial distance, here approximated
by a simple top-hat function. The result is a Bessel beam
that propagates unattenuated for a finite distance deter-
mined by the extent of the cavity and then collapses. This
is the classic picture of a propagating Bessel beam.

In the second scenario the cavity can be regarded as be-
ing unbounded in the plane so that the energy is injected
into a nonresonant state that decays exponentially from
the injection point as a result of radiative losses into the
Bessel beam. Now we must modify our argument for the
intensity of the Bessel beam. Turning again to Fig. 4 we
see that at a distance z from the cavity the beam draws its
energy from a point on the cavity a radial distance z tan 0
from the injection point. Thus the intensity of the beam

(b)

Fig. 3. (a) Narrow band of &, corresponding to a localized mode.
(b) Narrow bands of %, corresponding to two localized modes.

Bessel beam

Resonaiit ends here

point
source

Fig. 4. Two-dimensional schematic of the wave field created
with DBR arrangement.
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Fig. 5. (a) When the cavity is of finite size then the mode has a
fixed lateral extent and its intensity as a function of r is approxi-
mated by a top-hat function. (b) When the cavity is unbounded
the mode has an intensity that decays with radial distance.

along the z direction maps the radial distribution of en-
ergy, which in this case decays exponentially as shown in
Fig. 5(b). So, paradoxically, even in the case where it is
possible to have a propagating Bessel beam, it may in fact
show exponential decay because of the profile from which
it is generated. However, such a beam will maintain its
radial profile for a greater distance than in the first sce-
nario because of the presence of the tail of the mode’s in-
tensity.

The physical extent of the wave field L and the angle 6
describing the direction of the cone of wave vectors com-
pletely define the resulting Bessel beam. The angle is de-
pendent on the position of the transmission resonance in
« space. Furthermore, L is dependent on the width of the
transmitted resonance Ak, such that L ~1/Ak,. Therefore
the features of the resonance completely define the qual-
ity of the Bessel beam produced.

We investigate the proposed DBR system numerically
using a transfer-matrix method® to calculate the band
structure and transmission coefficients 7'(k,). Applying
the Fourier—Bessel transform to our k-space transmission
gives the real-space transmitted wave field E,
=[Tg(k,)explik,(z—z9)]Jo(k,r)k,dk,, where Tg(k,) is the
transmission coefficient for s-polarized light and z, is the
coordinate on the far side of the system.

We first present numerical results for a DBR arrange-
ment with parameters as shown in Table 1, which could
be experimentally realized to generate propagating
Bessel beams at optical frequencies, corresponding to
Bragg reflectors made from TiO, and SiO,.” In our simu-
lations we set the imaginary part of the dielectric con-
stants in our DBR system to 0.0002 as suggested in Ref.
9. This corresponds to a Q factor of ~5000.

Figure 6 shows the band structure of a Bragg reflector
with these parameters. For a fixed wavelength «=27/\
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and by careful selection of D, d, 1, and &9 we ensure that
all the modes with k,.<« lie within the first bandgap of
each Bragg reflector. Thus all propagating modes except
those that are degenerate with the localized mode within
the DBR cavity are prevented from being transmitted.

Figure 7 shows the calculated transmitted intensity at
z9 on the far side of the DBR arrangement as a function of
k.. A narrow band of %, centered around 0.83 x experi-
ences enhanced transmission. Therefore we expect this to
correspond to a propagating Bessel beam.

Figures 8(a) and 8(b) show the calculated real-space ra-
dial intensity profile and normalized real-space radial in-
tensity profile plotted for various distances in the z direc-
tion. Sure enough, a Bessel-like radial intensity is present
and a beam with central spot size of width ~0.5)\( can be
maintained for a distance in excess of 3000X\.

Figure 9 shows the transmitted intensity as a function
of z plotted for fixed r. As explained, paradoxically, even
though we have a propagating Bessel beam, the beam ex-
periences exponential decay because of the profile from
which it is generated.

Table 1. Parameters for a DBR Arrangement in Air

Value for
Parameter TiO,/Si0O, Bragg reflectors
27D/ \ 1.75
2md/\g 1.038
2md3/ Ny 2.243
e 4.41+0.0002:
&9 2.074+0.0002;
e3 1.96+0.0002;
N 12
N
153
N
X 20
<y
<
(5}
3
g 1.0
0.0

00 10 20 30 40 50
kD

Fig. 6. Band structure of TiO,/SiO, Bragg reflector. The hori-
zontal line corresponds to the fixed frequency of light used. The
vertical line corresponds to the cutoff between propagating and
evanescent modes. All propagating modes lie within the
bandgap.
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Fig. 7. Transmission as a function of %, for a DBR arrangement
with TiO,/SiO, Bragg reflectors.
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Fig. 8. (a) Transmitted intensity as a function of radial distance
for a DBR with TiO,/SiO, Bragg reflectors. (b) Normalized trans-
mitted intensity as a function of radial distance for a DBR with
TiO,/Si0, Bragg reflectors.
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Fig. 9. Intensity plotted against z for fixed r=0 and r=0.72\,
showing paradoxical exponential decay of intensity for a propa-
gating Bessel beam generated when the cavity is unbounded in
the plane.

If we use the above approximation L= 1/Ak, we expect
the maximum propagation distance to be (L/2)/tan 0
=161)\. This falls short of the actual value obtained and
reflects the fact that L=1/Ak, does not take account of
the extended tails of the wave fields.

3. GENERATING EVANESCENT BESSEL
BEAMS

To generate an evanescent Bessel beam we consider the
simple arrangement shown in Fig. 10 consisting of a
single film of thickness d; and dielectric constant & We
investigate the transmission of a point source through the
film which, as with the DBR arrangement discussed in
Section 2, could be a small silver deposition acting as a
resonant point source to scatter an incident beam to all
wave vectors.

The transmission through the film can be written in
terms of a series for multiple scattering between the
interfaces'”:
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T= t21t32 exp(zkzdf) + t21r32r12t32 exp(SLkzdf) + -

toitsg explik,dy)

= o 1)
1- r3ol'19 eXp(QZkde)

where ¢, and rj, are the partial transmission and reflec-
tion Fresnel coefficients across the interfaces, and &, is
the magnitude of the component of the wave vector in the
direction of propagation within the medium.

For imaginary k%, this function blows up when
r3orig €xp(2ik,dy)=1. This resonance produces a narrow
band of greatly enhanced transmission for modes with
k,.> k. If the intrinsic losses in the material are low,
propagating modes with %, <k have a transmission coeffi-
cient close to unity. The enhanced transmission for the
resonant modes is many orders of magnitude greater than
this.

Thus two competing wave fields are generated. One
corresponds to the transmitted propagating modes where
T(k,)~1 for k,< k. The second corresponds to the narrow
band of selectively enhanced evanescent modes where £,
> k. Because of the circular symmetry of the system, in a
manner analogous to that described in Section 2 this sec-
ond evanescent wave field describes an evanescent Bessel
beam.

Although the evanescent beam wave field is initially
many orders of magnitude greater than the propagating
wave field, it is of course decaying exponentially. Thus
within a short distance in the z direction the propagating
modes swamp the evanescent ones. However, for suffi-
ciently small z the evanescent Bessel beam dominates,
and within this regime the resulting transmitted inten-
sity has a Bessel-like radial profile with a subwavelength
central peak as defined by the position of the resonance.
This is the interesting regime in which our technique may
find applications fulfilling particular technological needs.
By increasing the dielectric constant of the film and re-

Air Air

Resonant point
source

d,

Fig. 10. Transmission through a thin dielectric film to generate
an evanescent Bessel beam.
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Fig. 11. Transmission as a function of %, for a thin film with
£=1.96+0.00017 and d;=0.357\,.
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Fig. 12. (a) Normalized transmitted intensity as a function of
radial distance for thin film with £=1.96+0.0001; and dy
=0.357\ for fixed z values up to z=0.27\,. (b) Normalized trans-
mitted intensity as a function of radial distance for thin film with
£=1.96+0.0001; and d;=0.357\, for fixed z values up to z=3\,.
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Fig. 14. Normalized transmitted intensity as a function of ra-
dial distance for thin film with ,=100.0+0.0001; and d;=0.05\,
for fixed z values up to z=0.10A\,.

ducing its thickness one can force the position of the reso-
nance in %, to move to higher values. Hence one has con-
trol over the subwavelength beam radius within this
regime.

Once the propagating modes start to dominate, the re-
sulting wave field becomes that corresponding to a point
source. This is because, for low losses, the thin film has no
effect on propagating modes, which are all transmitted.

We present numerical results for a thin glass film with
dy=0.357\g and &=1.96+0.0001:. Figure 11 shows the
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transmitted intensity at z," on the far side of the thin film
as a function of %,.. For the propagating modes correspond-
ing to k,< k the transmission 7'(k,)=1. A narrow band of
k, centered around 1.21 « experiences enhanced transmis-
sion, and this narrow band corresponds to an evanescent
Bessel beam.

Figures 12(a) and 12(b) show the calculated normalized
real-space intensity profile plotted for various distances
in the z direction. For sufficiently small z the resulting
profile is indeed Bessel-like, with a central spot size of
~0.34\ that is maintained for a distance of 0.14\.

However, within a couple of wavelengths in the z direc-
tion the profile is no longer dominated by a central peak.
Figure 13 shows |T?|exp(-k,z) as a function of %, for eva-
nescent modes. Within four wavelengths, the magnitude
of the resonance is reduced to =0.5 by the exponential,
and this explains why it no longer dominates.

If a yet smaller initial spot size is desired, this can be
achieved by selecting a film of higher dielectric constant
and with reduced thickness. Figure 14, for example,
shows the calculated normalized real-space intensity pro-
file plotted for various distances in the z direction for a
film with d;=0.056\; and &=100.0+0.0001;. For suffi-
ciently small z the resulting profile has a central spot size
of ~0.08\, that is maintained for a distance of 0.06)\.

To extend the range over which the evanescent reso-
nance dominates, we need to suppress the transmission of
propagating modes. To do this one might consider the use
of a multilayer structure to produce a bandgap. However,
any such multilayer structure will result in more than a
single evanescent resonance. Multiple resonances yield
wave fields that do not correspond to Bessel beams.

4. CONCLUSION

The technique we suggest is able to produce both propa-
gating and evanescent Bessel beams. Our calculations
show that by using a DRB with the parameters we pro-
pose, a propagating Bessel beam with a central spot size
of ~0.5\¢ can—remarkably—be maintained for a distance
in excess of 3000\y. Our calculations also show that by
use of only a simple thin-film arrangement, evanescent
Bessel beams can be generated that have a central spot
size of ~0.34\( that is maintained for a distance of 0.14\
(although, of course, the field is decaying exponentially
with z). For both of these systems, by appropriate choice
of optical parameters and geometry the central spot size
of the Bessel beam produced can be controlled. However,
since the central spot size is approximately kr_1 there is a
limit on how narrow a propagating Bessel beam can be
when %,< k. In the case of the evanescent Bessel beam,
this limitation is overcome with the trade-off that the
field decays exponentially.

Let us compare our simulated results with other tech-
niques for generating propagating Bessel beams. For rela-
tively large spot size (compared with the wavelength)
Durnin et al.! have produced propagating beams with
spot sizes of =0.2 mm (316\,) that are maintained for al-
most 1 m (1.6x10%\;) with use of 633-nm-wavelength
light. Our technique is suitable for generating much
smaller beam sizes than this albeit of shorter range. More
directly comparable with our technique, using an axicon
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Garcés-Chavez et al.!! have generated Bessel beams with
central spot sizes of ~500 nm (0.47\,) that are main-
tained for approximately 4 mm (3760\,) with use of
1064-nm light. These parameters are very similar to
those we are able to obtain from our simulations in the
propagating cases.

By reducing the losses in our proposed DBR system and
thus making the resonance in « space yet narrower, the
propagation distance of the Bessel beam can be increased.
Whether such an extension is favorable over other meth-
ods of beam generation will depend on the details of the
particular application one has in mind.

It is worth commenting on the flexibility of the method
of beam generation we propose. Since Maxwell’s laws are
scalable, by scaling the geometry of the DBR arrange-
ment or thin film one is able to extend the technique into
a variety of frequency regimes. It is an engineering prob-
lem rather than a problem of principle, involving meeting
the challenge to find materials with appropriate dielectric
constants at the wavelengths being used.

Bessel beams have a variety of potential applications.
In the microwave region propagating Bessel beams may
have uses in radar technology and, at radio frequencies,
in covert communications. The most important uses are
likely to be in the optical regime, where these beams
could play a role in the development of optical
tweezers'"'? and in high-density recording. It is in this
latter role that evanescent Bessel beams and the sub-
wavelength beam diameters that such beams exhibit
could prove useful tools in certain technologies.
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