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Generating Bessel beams by use of localized
modes
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We propose a novel method for generating both propagating and evanescent Bessel beams. To generate propa-
gating Bessel beams we propose using a pair of distributed Bragg reflectors (DBRs) with a resonant point
source on one side of the system. Those modes that couple with the localized modes supported by the DBR
system will be selectively transmitted. This is used to produce a single narrow band of transmission in k space
that, combined with the circular symmetry of the system, yields a propagating Bessel beam. We present nu-
merical simulations showing that a propagating Bessel beam with central spot size of ,0.5l0 can be main-
tained for a distance in excess of 3000l0. To generate evanescent Bessel beams we propose using transmission
of a resonant point source through a thin film. A transmission resonance is produced as a result of the multiple
scattering occurring between the interfaces. This narrow resonance combined with the circular symmetry of
the system corresponds to an evanescent Bessel beam. Because propagating modes are also transmitted, al-
though the evanescent transmission resonance is many orders of magnitude greater than the transmission for
the propagating modes, within a certain distance the propagating modes swamp the exponentially decaying
evanescent ones. Thus there is only a certain regime in which evanescent Bessel beams dominate. However,
within this regime the central spot size of the beam can be made significantly smaller than the wavelength of
light used. Thus evanescent Bessel beams may have technical application, in high-density recording for ex-
ample. We present numerical simulations showing that with a simple glass thin film an evanescent Bessel
beam with central spot size of ,0.34l0 can be maintained for a distance of 0.14l0. By choice of different ma-
terial parameters, the central spot size can be made smaller still. © 2005 Optical Society of America

OCIS codes: 260.1960, 260.5740, 240.0310, 230.1480.
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. INTRODUCTION
here exist solutions to Maxwell’s equations that repre-
ent beams with well-defined narrow beam radii that do
ot undergo diffractive spreading. Such beams are known
s Bessel beams. They can be propagating or evanescent.
Bessel beams were first proposed by Durnin and

o-workers.1,2 They pointed out that the Helmholtz equa-
ion is satisfied by a monochromatic wave propagating in
he z direction with field amplitude Fsx ,y ,z ;kd
expsikzzdJ0skrrd, where kz

2+kr
2=k2, x2+y2=r2, and J0 is

he zeroth-order Bessel function of the first kind. When
,kr,k this expression describes a propagating Bessel
eam that does not undergo diffractive spreading and
hat has the same intensity distribution J0

2skrrd in every
lane normal to the z axis. Of course the solution is rig-
rously exact only in free space. In any physical realiza-
ion of a propagating Bessel beam, although diffractive
preading is initially repressed, after a fixed propagation
istance the beam experiences a rapid drop-off in inten-
ity.

An ideal propagating Bessel beam is described by the
uperposition of the set of plane waves with wave vectors
ying on the surface of a cone2 as shown in Fig. 1. There
re a variety of methods for generating propagating
essel beams,1–6 all of which approximately produce such
superposition of plane waves, albeit limited by finite ap-

rture effects. Durnin and co-workers, for example, illu-
inate a circular slit with collimated light.1 Each point

n the slit ideally acts as a point source that a lens then
1084-7529/05/050992-6/$15.00 © 2
ransforms into a plane wave. The superposition of each
f these wave fields forms a propagating Bessel beam.

The half-width of the central peak of a Bessel beam is
pproximately kr

−1. Therefore by making kr larger, with
r,k, a narrower propagating Bessel beam can be pro-
uced. When kr.k the beam width can be made smaller
till, significantly smaller than the wavelength of light
sed. However, in this regime the beam ceases to be
ropagating and is evanescent. Evanescent Bessel beams
ave been investigated theoretically by Ruschin and
eizer.7 With such beams we have a trade-off. On the one
and, the beam can be made very narrow. However, the
eld amplitude will decay exponentially. Evanescent
essel beams may still have technical applications since,

n contrast to a point source of radiation, in the ideal case
he cross section of an evanescent Bessel beam does not
eteriorate. Therefore the range is restricted only by the
ractical limit of the sensitivity of the detector used.

. GENERATING PROPAGATING BESSEL
EAMS
o generate a propagating Bessel beam we consider a pair
f distributed Bragg reflectors (DBRs) with a central cav-
ty as shown in Fig. 2. The dielectric constants of the two
ayers in each Bragg reflector are «1 and «2, and each
ragg reflector has N bilayers. The unit cell of the Bragg
tack is of thickness D and the first layer in the unit cell
s of thickness d. The cavity is of length d3 and has a di-
lectric constant « .
3

005 Optical Society of America
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We investigate the transmission of a point source
hrough the DBR structure. A small silver deposition
ould be used to act as a resonant point source scattering
n incident beam to all wave vectors. Alternatively we
ould embed a laser diode inside the cavity. The DBR ar-
angement is then able to act as a filter that allows only
odes corresponding to a narrow band of kr,k to be

ransmitted. The symmetry of the system within the
lane of stratification means that these modes are those
ith wave vectors lying on the surface of a cone. There-

ore a propagating Bessel beam is generated.
Let us consider how this filtering of modes comes about.
orking at a particular frequency, we select «1, «2, D, and
such that all the modes lie within a bandgap of each

ragg reflector. As illustrated in Fig. 2 the DBR arrange-
ent can localize a mode within the cavity. Two condi-

ions are necessary for this. First the mode must lie
ithin the bandgap of the two Bragg reflectors so that the
eld corresponding to this mode is decaying within each
f the Bragg reflectors. Second the cavity must be able to
upport a propagating mode. For this latter condition to
e fulfilled at least half a wavelength must be able to “fit
nto” the cavity. Therefore d3 must be greater than
0/2Î«3.
Figure 3(a) shows the narrow band of localized modes

hen the cavity supports only one propagating mode.
nly those incident wave vectors that are degenerate
ith these localized modes will be able to couple to them
nd thus have their transmission through the DBR sys-
em selectively enhanced. All other propagating modes
ill be suppressed by the bandgap. As the cavity length
3 is increased beyond l0 /Î«3 other propagating modes
an be supported within the cavity as shown in Fig. 3(b).
ncident wave vectors degenerate with these modes will
lso be selectively transmitted across the DBR system.
his results in a transmitted wave field that no longer

Fig. 1. Wave vectors lying on the surface of a cone.

ig. 2. Distributed Bragg reflectors with field decaying into
ragg stacks and localized mode in the cavity.
orresponds to a Bessel beam. Therefore we must be sure
o maintain the condition l0 /Î«3.d3.l0 /2Î«3.

We now have two scenarios. In the first we imagine
hat the cavity is of finite extent in the plane of the cavity.
or example, it might consist of a cylindrical cavity. If we
hen tune to one of the modes of this cavity and ensure
hat the radiative losses through the ends are small, our
ource will fill the mode with energy, and the range of the
essel beam will be predicted by the lateral extent of the
ode ,L, as shown in Fig. 4. Figure 5(a) shows the inten-

ity of the mode with radial distance, here approximated
y a simple top-hat function. The result is a Bessel beam
hat propagates unattenuated for a finite distance deter-
ined by the extent of the cavity and then collapses. This

s the classic picture of a propagating Bessel beam.
In the second scenario the cavity can be regarded as be-

ng unbounded in the plane so that the energy is injected
nto a nonresonant state that decays exponentially from
he injection point as a result of radiative losses into the
essel beam. Now we must modify our argument for the

ntensity of the Bessel beam. Turning again to Fig. 4 we
ee that at a distance z from the cavity the beam draws its
nergy from a point on the cavity a radial distance z tan u
rom the injection point. Thus the intensity of the beam

ig. 3. (a) Narrow band of kr corresponding to a localized mode.
b) Narrow bands of kr corresponding to two localized modes.

ig. 4. Two-dimensional schematic of the wave field created
ith DBR arrangement.
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long the z direction maps the radial distribution of en-
rgy, which in this case decays exponentially as shown in
ig. 5(b). So, paradoxically, even in the case where it is
ossible to have a propagating Bessel beam, it may in fact
how exponential decay because of the profile from which
t is generated. However, such a beam will maintain its
adial profile for a greater distance than in the first sce-
ario because of the presence of the tail of the mode’s in-
ensity.

The physical extent of the wave field L and the angle u
escribing the direction of the cone of wave vectors com-
letely define the resulting Bessel beam. The angle is de-
endent on the position of the transmission resonance in
space. Furthermore, L is dependent on the width of the

ransmitted resonance Dkr such that L<1/Dkr. Therefore
he features of the resonance completely define the qual-
ty of the Bessel beam produced.

We investigate the proposed DBR system numerically
sing a transfer-matrix method8 to calculate the band
tructure and transmission coefficients Tskrd. Applying
he Fourier–Bessel transform to our k-space transmission
ives the real-space transmitted wave field Et
eTSskrdexpfikzsz−z2dgJ0skrrdkrdkr, where TSskrd is the

ransmission coefficient for s-polarized light and z2 is the
oordinate on the far side of the system.

We first present numerical results for a DBR arrange-
ent with parameters as shown in Table 1, which could

e experimentally realized to generate propagating
essel beams at optical frequencies, corresponding to
ragg reflectors made from TiO2 and SiO2.9 In our simu-

ations we set the imaginary part of the dielectric con-
tants in our DBR system to 0.0002 as suggested in Ref.
. This corresponds to a Q factor of ,5000.
Figure 6 shows the band structure of a Bragg reflector

ith these parameters. For a fixed wavelength k=2p /l

ig. 5. (a) When the cavity is of finite size then the mode has a
xed lateral extent and its intensity as a function of r is approxi-
ated by a top-hat function. (b) When the cavity is unbounded

he mode has an intensity that decays with radial distance.
0

nd by careful selection of D, d, «1, and «2 we ensure that
ll the modes with kr,k lie within the first bandgap of
ach Bragg reflector. Thus all propagating modes except
hose that are degenerate with the localized mode within
he DBR cavity are prevented from being transmitted.

Figure 7 shows the calculated transmitted intensity at
2 on the far side of the DBR arrangement as a function of
r. A narrow band of kr centered around 0.83 k experi-
nces enhanced transmission. Therefore we expect this to
orrespond to a propagating Bessel beam.

Figures 8(a) and 8(b) show the calculated real-space ra-
ial intensity profile and normalized real-space radial in-
ensity profile plotted for various distances in the z direc-
ion. Sure enough, a Bessel-like radial intensity is present
nd a beam with central spot size of width ,0.5l0 can be
aintained for a distance in excess of 3000l0.
Figure 9 shows the transmitted intensity as a function

f z plotted for fixed r. As explained, paradoxically, even
hough we have a propagating Bessel beam, the beam ex-
eriences exponential decay because of the profile from
hich it is generated.

Table 1. Parameters for a DBR Arrangement in Air

arameter
Value for

TiO2/SiO2 Bragg reflectors

pD /l0 1.75
pd /l0 1.038
pd3 /l0 2.243

1 4.41+0.0002i

2 2.074+0.0002i

3 1.96+0.0002i
12

ig. 6. Band structure of TiO2/SiO2 Bragg reflector. The hori-
ontal line corresponds to the fixed frequency of light used. The
ertical line corresponds to the cutoff between propagating and
vanescent modes. All propagating modes lie within the
andgap.

ig. 7. Transmission as a function of kr for a DBR arrangement
ith TiO /SiO Bragg reflectors.
2 2
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If we use the above approximation L<1/Dkr we expect
he maximum propagation distance to be sL /2d / tan u
161l0. This falls short of the actual value obtained and
eflects the fact that L<1/Dkr does not take account of
he extended tails of the wave fields.

. GENERATING EVANESCENT BESSEL
EAMS
o generate an evanescent Bessel beam we consider the
imple arrangement shown in Fig. 10 consisting of a
ingle film of thickness df and dielectric constant «f. We
nvestigate the transmission of a point source through the
lm which, as with the DBR arrangement discussed in
ection 2, could be a small silver deposition acting as a
esonant point source to scatter an incident beam to all
ave vectors.
The transmission through the film can be written in

erms of a series for multiple scattering between the
nterfaces10:

ig. 8. (a) Transmitted intensity as a function of radial distance
or a DBR with TiO2/SiO2 Bragg reflectors. (b) Normalized trans-

itted intensity as a function of radial distance for a DBR with
iO2/SiO2 Bragg reflectors.

ig. 9. Intensity plotted against z for fixed r=0 and r=0.72l0
howing paradoxical exponential decay of intensity for a propa-
ating Bessel beam generated when the cavity is unbounded in
he plane.
T = t21t32 expsikzdfd + t21r32r12t32 exps3ikzdfd + ¯

=
t21t32 expsikzdfd

1 − r32r12 exps2ikzdfd
, s1d

here tjk and rjk are the partial transmission and reflec-
ion Fresnel coefficients across the interfaces, and kz is
he magnitude of the component of the wave vector in the
irection of propagation within the medium.
For imaginary kz this function blows up when

32r12 exps2ikzdfd=1. This resonance produces a narrow
and of greatly enhanced transmission for modes with
r.k. If the intrinsic losses in the material are low,
ropagating modes with kr,k have a transmission coeffi-
ient close to unity. The enhanced transmission for the
esonant modes is many orders of magnitude greater than
his.

Thus two competing wave fields are generated. One
orresponds to the transmitted propagating modes where
skrd,1 for kr,k. The second corresponds to the narrow
and of selectively enhanced evanescent modes where kr
k. Because of the circular symmetry of the system, in a
anner analogous to that described in Section 2 this sec-

nd evanescent wave field describes an evanescent Bessel
eam.
Although the evanescent beam wave field is initially
any orders of magnitude greater than the propagating
ave field, it is of course decaying exponentially. Thus
ithin a short distance in the z direction the propagating
odes swamp the evanescent ones. However, for suffi-

iently small z the evanescent Bessel beam dominates,
nd within this regime the resulting transmitted inten-
ity has a Bessel-like radial profile with a subwavelength
entral peak as defined by the position of the resonance.
his is the interesting regime in which our technique may
nd applications fulfilling particular technological needs.
y increasing the dielectric constant of the film and re-

ig. 10. Transmission through a thin dielectric film to generate
n evanescent Bessel beam.

ig. 11. Transmission as a function of kr for a thin film with
=1.96+0.0001i and d =0.357l .
f f 0
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ucing its thickness one can force the position of the reso-
ance in kr to move to higher values. Hence one has con-
rol over the subwavelength beam radius within this
egime.

Once the propagating modes start to dominate, the re-
ulting wave field becomes that corresponding to a point
ource. This is because, for low losses, the thin film has no
ffect on propagating modes, which are all transmitted.

We present numerical results for a thin glass film with
=0.357l and « =1.96+0.0001i. Figure 11 shows the

ig. 12. (a) Normalized transmitted intensity as a function of
adial distance for thin film with «f=1.96+0.0001i and df
0.357l0 for fixed z values up to z=0.27l0. (b) Normalized trans-
itted intensity as a function of radial distance for thin film with

f=1.96+0.0001i and df=0.357l0 for fixed z values up to z=3l0.

ig. 13. uT2uexps−kzzd for a thin film with «f=1.96+0.0001i and
f=0.357l0.

ig. 14. Normalized transmitted intensity as a function of ra-
ial distance for thin film with «f=100.0+0.0001i and df=0.05l0
or fixed z values up to z=0.10l0.
f 0 f
ransmitted intensity at z28 on the far side of the thin film
s a function of kr. For the propagating modes correspond-
ng to kr,k the transmission Tskrd<1. A narrow band of
r centered around 1.21 k experiences enhanced transmis-
ion, and this narrow band corresponds to an evanescent
essel beam.
Figures 12(a) and 12(b) show the calculated normalized

eal-space intensity profile plotted for various distances
n the z direction. For sufficiently small z the resulting
rofile is indeed Bessel-like, with a central spot size of
0.34l0 that is maintained for a distance of 0.14l0.
However, within a couple of wavelengths in the z direc-

ion the profile is no longer dominated by a central peak.
igure 13 shows uT2uexps−kzzd as a function of kr for eva-
escent modes. Within four wavelengths, the magnitude
f the resonance is reduced to <0.5 by the exponential,
nd this explains why it no longer dominates.
If a yet smaller initial spot size is desired, this can be

chieved by selecting a film of higher dielectric constant
nd with reduced thickness. Figure 14, for example,
hows the calculated normalized real-space intensity pro-
le plotted for various distances in the z direction for a
lm with df=0.05l0 and «f=100.0+0.0001i. For suffi-
iently small z the resulting profile has a central spot size
f ,0.08l0 that is maintained for a distance of 0.06l0.

To extend the range over which the evanescent reso-
ance dominates, we need to suppress the transmission of
ropagating modes. To do this one might consider the use
f a multilayer structure to produce a bandgap. However,
ny such multilayer structure will result in more than a
ingle evanescent resonance. Multiple resonances yield
ave fields that do not correspond to Bessel beams.

. CONCLUSION
he technique we suggest is able to produce both propa-
ating and evanescent Bessel beams. Our calculations
how that by using a DRB with the parameters we pro-
ose, a propagating Bessel beam with a central spot size
f ,0.5l0 can—remarkably—be maintained for a distance
n excess of 3000l0. Our calculations also show that by
se of only a simple thin-film arrangement, evanescent
essel beams can be generated that have a central spot
ize of ,0.34l0 that is maintained for a distance of 0.14l0
although, of course, the field is decaying exponentially
ith z). For both of these systems, by appropriate choice

f optical parameters and geometry the central spot size
f the Bessel beam produced can be controlled. However,
ince the central spot size is approximately kr

−1 there is a
imit on how narrow a propagating Bessel beam can be
hen kr,k. In the case of the evanescent Bessel beam,

his limitation is overcome with the trade-off that the
eld decays exponentially.
Let us compare our simulated results with other tech-

iques for generating propagating Bessel beams. For rela-
ively large spot size (compared with the wavelength)
urnin et al.1 have produced propagating beams with

pot sizes of <0.2 mm s316l0d that are maintained for al-
ost 1 m s1.63106l0d with use of 633-nm-wavelength

ight. Our technique is suitable for generating much
maller beam sizes than this albeit of shorter range. More
irectly comparable with our technique, using an axicon
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arcés-Chávez et al.11 have generated Bessel beams with
entral spot sizes of ,500 nm s0.47l0d that are main-
ained for approximately 4 mm s3760l0d with use of
064-nm light. These parameters are very similar to
hose we are able to obtain from our simulations in the
ropagating cases.
By reducing the losses in our proposed DBR system and

hus making the resonance in k space yet narrower, the
ropagation distance of the Bessel beam can be increased.
hether such an extension is favorable over other meth-

ds of beam generation will depend on the details of the
articular application one has in mind.
It is worth commenting on the flexibility of the method

f beam generation we propose. Since Maxwell’s laws are
calable, by scaling the geometry of the DBR arrange-
ent or thin film one is able to extend the technique into
variety of frequency regimes. It is an engineering prob-

em rather than a problem of principle, involving meeting
he challenge to find materials with appropriate dielectric
onstants at the wavelengths being used.

Bessel beams have a variety of potential applications.
n the microwave region propagating Bessel beams may
ave uses in radar technology and, at radio frequencies,

n covert communications. The most important uses are
ikely to be in the optical regime, where these beams
ould play a role in the development of optical
weezers11,12 and in high-density recording. It is in this
atter role that evanescent Bessel beams and the sub-
avelength beam diameters that such beams exhibit

ould prove useful tools in certain technologies.

CKNOWLEDGMENTS
ayne Williams is supported by the European Commu-

ity Information Society Technologies program Develop-

ent and Analysis of Left-Handed Materials, project IST-
001-35511. J. B. Pendry is supported by the Engineering
nd Physical Sciences Research Council, the European
nion under project FP6-NMP4-CT-2003-505699, and
.S DoD Office of Naval Research MURI grant N00014-
1-1-0803.

The e-mail address of corresponding author Wayne Wil-
iams is wayne.williams@imperial.ac.uk.

EFERENCES
1. J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, “Diffraction-

free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
2. J. Durnin, “Exact solutions for nondiffracting beams. I.

The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987).
3. J. Durnin and J. H. Eberly, “Diffraction-free arrangement,”

U.S. patent 4,852,973 (1 August 1989).
4. J. Eberly, Department of Physics and Astronomy,

University of Rochester, Rochester, New York 14627
(personal communication, 2004).

5. A. Vasara, J. Turunen, and A. T. Friberg, “Realization of
general nondiffracting beams with computer-generated
holograms,” J. Opt. Soc. Am. A 6, 1748–1754 (1989).

6. R. M. Herman and T. A. Wiggins, “Production and uses of
diffractionless beams,” J. Opt. Soc. Am. A 8, 932–942
(1991).

7. S. Ruschin and A. Leizer, “Evanescent Bessel beams,” J.
Opt. Soc. Am. A 15, 1139–1143 (1998).

8. M. Born and E. Wolf, Principles of Optics (Pergamon,
Oxford, UK, 1975).

9. W. M. Robertson, “Experimental measurement of the effect
of termination on surface electromagnetic waves in one-
dimensional photonic bandgap arrays,” J. Lightwave
Technol. 17, 2013–2017 (1999).

0. J. B. Pendry, Low Energy Electron Diffraction (Academic,
London, 1974).

1. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and
K. Dholakia, “Simultaneous micromanipulation in multiple
planes using a self-reconstructing light beam,” Nature
(London) 419, 145–147 (2002).

2. D. McGloin, V. Garcés-Chávez, and K. Dholakia,
“Interfering Bessel beams for optical micromanipulation,”

Opt. Lett. 28, 657–659 (2003).


