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An experimental and numerical study of the coupling properties of cavity waveguides and the phase ad-
vancement through the coupled cavity waveguides in two-dimensional photonic crystals is presented. We find
that the resonance frequency is insensitive to the confinement strength for cavity and for finite size defects. We
obtain the coupling constant as a function of the distance between two cavities within the tight-binding
formalism experimentally, and show the exponential decay of the coupling strength. By measuring the phase
spectra of coupled cavity waveguidessCCW’sd, we clearly demonstrate that the phase shift across the guiding
band is equal toNp, whereN is the number of cavities in the waveguide. This essential behavior is employed
to analyze the transmission response of CCW-based Mach-Zehnder interferometer structures introduced
recently.
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I. INTRODUCTION

Waveguide structures are essential components of photo-
nic integrated circuits. In photonic crystalssPC’sd, it is
proposed1 and shown2–6 that the electromagnetic wave can
be guided through sharp bends and intersections with high
transmission characteristics. Various designs for waveguide
bends have been studied to improve the transmission.7–10

Following the proposal by Yarivet al.,11 coupled cavity
waveguidessCCW’sd in photonic crystals have become an
intense research subject in recent years, as they provide some
advantages over conventional PC-based waveguides.11–14

These advancements open a way to construct extremely
compact and efficient integrated photonic circuits.5,6,15,16Nu-
merous CCW-based fundamental optical device components
se.g., splitters, switches, channel add-drop filtersd have been
demonstrated in the microwave regime and are being readied
for the optical regime. In particular, CCW’s can be utilized to
construct ultracompact optical delay lines which has a direct
impact on the overall device size.17 The application potential
of CCW’s drives in turn the investigation of basic optical
properties in detail, such as the coupling properties of
cavities. Lanet al.18 pointed out this necessity and conducted
a systematic analysis of defect coupling in one- and two-
dimensional photonic crystals using transfer matrix
formalism.

In the first part of the paper, we aim to extend the inves-
tigation of the coupling properties of CCW’s experimentally
and numerically. In particular, we show the exponential de-
cay of localized modes within the cavities, by measuring the
coupling strength of two cavities as a function of the inter-
cavity distance. For this purpose, we employ the tight-
binding formalism. Surprisingly, we find that even the result-
ing eigenmodes of two merged cavities obey the tight-
binding formalism very well, despite the anticipated strong
interaction between the individual cavity modes.

In the second part of the paper, we investigate the phase
delay spectra of single and coupled cavity structures. It is
well known that, in addition to improved transmission char-
acteristics, the slow group velocity at the guiding band edges

promotes CCW’s as promising candidates for optical delay
lines. An example is the CCW-based Mach-Zehnder interfer-
ometersMZI d, proposed and demonstrated recently. Soljačić
et al. investigated the phase shift induced by nonlinear ef-
fects in CCW-based MZI numerically.19 Later, Martinezet
al.20 demonstrated experimentally a MZI structure, with a
simple transfer function model utilizing the difference in the
number of cavities of the respective interferometer branches.
Both studies emphasize the compact size of the structures
that is required to attain the operational phase shift ofp. To
this end, we measure the phase delay of CCW’s, and dem-
onstrate that the phase shift through a cavity is equal top,
which then extends linearly toNp for a CCW consisting of
N cavities. This leads to a clear interpretation of the opera-
tion of a CCW-based MZI in terms of the phase difference
si.e., difference in the number of cavitiesd between the re-
spective branches of the interferometer, and provides support
to the transfer function model introduced before.20

This paper is organized as follows: In the second section,
we describe the experimental setup and present the measure-
ments of confinement effects on a single cavity and the cou-
pling strength between two cavities as a function of the in-
tercavity distance. The measurement of the phase spectra of
single cavity and CCW structures is discussed in the third
section. In the fourth section, we employ the results of the
third section to analyze the operation of CCW-based MZI
structures. We conclude by summarizing the results.

II. COUPLED CAVITIES: CONFINEMENT EFFECTS
AND THE COUPLING CONSTANT

The photonic crystal in this study consists of a hexagonal
array of cylindrical alumina rods with radiusr =1.575 mm
and a refractive index ofn=3.13 at microwave frequencies.
The lattice constant is chosen asa=7.0 mm. The transmis-
sion and phase spectra are measured using a network ana-
lyzer and a set of horn antennas in TM polarizationfelectric
field E perpendicular to the plane of two-dimensionals2Dd
photonic crystalg. In all measurements, the major propaga-
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tion direction is set along theGK direction of the photonic
crystal, unless otherwise noted. Numerical simulations based
on the finite-difference time-domainsFDTDd method are
used to compare with experimental data.

We first measured the transmission spectrum of the uni-
form photonic crystal, which exhibits a band gap between
12.8 and 18.7 GHz. A single cavity is formed by removing a
rod within the photonic crystal, which appears as a localized
mode within the gap of the transmission spectrum. For the
investigation of the confinement, two PC structures are con-
structed having 5329 and 7329 layers, respectively. Since
the crystal is much thicker along the lateral direction, the
confinement depends on the number of layers around the
cavity along the propagation direction, which we denote as
“cap layers” in this paper. For the present structures, the
number of cap layers are 2 and 3, respectively. Figure 1
shows the transmission spectra of a single cavity for two
confinement strengths, which are depicted by the schematics
in the figure. The cavity mode frequency located atf
=16.898 GHz appears to be independent of the confinement
strength. This agrees well with the transfer matrix results
where no significant dependence of resonant frequency on
defect size is reported.18

It is evident that the spectral width and the transmission
amplitude shrinks with increasing confinement, as expected.
We further note that the dashed lines obtained by FDTD
measurements are in very good agreement with the measure-
ments.

Figure 2 shows the transmission spectra for two defects of
radii 0.645 and 6.06 mm, respectively. The larger defect ex-
hibits two modes, from which only the high-frequency mode
is shown on the figure. For the small defect, the resonance
frequency isf =15.98 and 16.02 GHz for strong and weak
confinements, respectively. In the case of large defect, the
resonance occurs atf =16.90 and 16.92 GHz, respectively.
Even though a shift of resonance frequency is noticeable, we
refrain from attributing this shift solely to the finite size of
the defect. This is because the small distortions of the rod
positions while modifying the confinement strengthsi.e., re-

moving or adding rods to cap layersd may alter the frequency
of the cavity and cause a shift of similar magnitude.

Although the confinement strength does not alter the reso-
nance mode, the spectral broadening of the mode depends on
it. We find that adding one more cap layer to each end of the
crystal increases the confinement drastically, evident from
the decrease of the spectral width of the mode.

If two or more cavities are present, it is well known that
the eigenmode of the single cavity splits into coupled modes.
This phenomenon is investigated experimentally and de-
scribed within the classical wave analog of the tight-binding
sTBd approximation for photonic crystal structures in
detail.11–14,21–23In the following, we will present the depen-
dence of the coupling parameter to the intercavity distance
for two cavities. Based on the formulation of Ref. 12, the
eigenfrequencies of two coupled cavities are given by

v1,2= VÎ1 ± b1

1 ± a1
, s1d

wherea1 andb1 are the first-order coupling parameters de-
fined as

a1 =E drW«srWdEW VsrWd ·EW VsrW − Lx̂d, s2ad

b1 =E drW«0sr − Lx̂dEW VsrWd ·EW VsrW − Lx̂d. s2bd

Here, EW VsrWd describes the single-cavity mode,«0srWd and
«srWd=«srW−Lx̂d are the dielectric functions of the single- and
coupled-cavity systems, respectively, andL is the distance
between the cavities.

For an array of cavities, where each cavity interacts
weakly with neighboring cavities, a defect bandswaveguid-
ing bandd is formed. Similar to the two-coupled-cavity case,

FIG. 1. Measuredssolid linesd and simulatedsdashed linesd
transmission spectrum of a single cavity for the number 2sgrayd
and 3sblackd of confining layers. Top right: Schematics of the re-
spective structuressfull lateral width is not shownd.

FIG. 2. Transmission spectra for a defect of radiusr
=0.645 mmsleft paneld and of a defect of radiusr =6.06 mmsright
paneld. Upperslowerd curves correspond to weaksstrongd confine-
ment. Schematics display the strong confinement structures for re-
spective defect sizes.
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the eigenmode of this waveguiding band can be written as a
superposition of the individual cavity modes. Forn cavities
this can be written as

EW srWd = E0o
n

e−inkLEW VsrW − nLx̂d. s3d

A simple expression for the dispersion relation of the
waveguiding band is given by

vskd = Vf1 + k cosskLdg, s4d

wherek= ub1−a1u is the coupling constant parameter, which
can be obtained from the splitting of the eigenmodes of two
coupled cavities. After obtainingV, v1, and v2 from mea-
surements or simulations, one can determinea1 andb1 val-
ues by using Eqs.s2ad ands2bd. The bandwidth of the guided
modes is proportional to the coupling constant and to the
single-cavity frequency

Dv = 2kV. s5d

Thus, an alternative method for obtaining the coupling con-
stant is measuring the bandwidth of the waveguide and the
resonance frequency of an isolated cavity.

Based on this formalism, we investigate the dependence
of the coupling constant to the distance between the cavities.
Two cavities are formed by removing rods within the PC.
The distance between the cavities is changed by an integer
multiple of the crystal period froma to 4a. By determining
the eigenfrequencies from the transmission spectra, the TB
coupling constant is calculated. Table I lists the measured
and simulated data for the eigenmode frequencies of two
coupled cavities and the corresponding calculated TB cou-
pling constant.

In Fig. 3, we plot the calculated coupling constant as a
function of the distance between the cavities. Since the spa-
tial extent of the modes decays exponentially, the coupling
constant, which essentially depends on the overlap integral
of the eigenmodes, also shows an exponential decay. Here,
we observe an interesting behavior: when the intercavity dis-
tance isa, the two cavities actually merge to into a single
multimode cavity of size 2a, and the modes of this cavity are
strongly interacting. Yet, the resulting mode splitting can be
described within the TB formalism and the coupling constant
fits to the exponential decay behavior very well, as shown in
Fig. 3. However, second nearest neighbor couplings become
significant with decreasing intercavity distance, therefore,

the extension of this particular case to a waveguideswhich,
actually becomes a straight waveguided may deviate from TB
formalism in its transmission characteristies.

We note that the exponential dependence is obtained be-
tween the nondegenerate fundamental mode of the cavities.
In the case of modes with nonisotropic spatial extension, the
overlap of the fields, and hence the coupling constant as a
function of intercavity distance may deviate from the expo-
nential behavior.

III. THE PHASE SPECTRA OF COUPLED CAVITIES

The phase information of the transmitted electromagnetic
wave is required to determine the dispersion of PC struc-
tures. Various experimental studies are performed to deter-
mine the band structure of two-dimensional and three-
dimensional photonic crystals for different frequency
regimes.24,25 The frequency-dependent phase shift is usually
measured by time-domain spectroscopy26–28 or using a net-
work analyzer. Robertsonet al.26 investigated the band struc-
ture of alumina based 2D PC’s using coherent microwave
transient spectroscopy. Kitaharaet al.27 measured the ampli-
tude and phase shift of transmission spectra of
methylpentene-polymer-based photonic crystals by terahertz
time-domain spectroscopy, and found out that the phase shift
per crystal plane is equal top. On the other hand, we have
found, to our knowledge, that a direct measurement of the
phase shift through CCW’s was not reported before, notwith-

TABLE I. The resonant frequencies and corresponding tight-binding coupling constants of two coupled
cavities for different intercavity distances, obtained by measurements and calculated from FDTD simulations.

Experiment Simulation

Distance f1 sGHzd f2 sGHzd k f1 sGHzd f2 sGHzd k

a 15.778 17.964 0.1291 15.747 17.971 0.1313

2a 16.650 17.130 0.0283 16.657 17.118 0.0273

3a 16.822 16.948 0.0071 16.825 16.940 0.0063

4a 16.905 16.992 0.0015 16.867 16.894 0.0011

FIG. 3. Measuredssolid circlesd and simulatedsopen squaresd
tight-binding coupling constant as a function of the distance be-
tween the cavities. The dashed line denotes the exponential fit.
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standing the studies involving CCW’s in the context of opti-
cal delay lines. In this section of the paper, we are addressing
this overlooked issue. As we will present shortly, understand-
ing how the phase advances through a CCW provides a clear
and solid basis for interpreting the operation of CCW-based
MZI structures.

The phase measurements in our study are performed with
an HP 8510C network analyzer. The instrument itself pro-
vides the phase of the transmitted signalsS12 in the
S-parameter conventiond, betweenf−p , +pg, as a function of
frequency. These raw data are then “unwrapped” by adding
2p at the ±p jumps, to obtain the phase spectra. Since the
absolute phase is meaningless, the phase is measured with
respect to a calibration. We first perform the calibration in
air, by removing the photonic crystal between the antennas,
and then measure the relative phase of the relevant structure.

Figure 4 shows the measured phase change through single
cavity and two and three coupled cavities along with the
corresponding transmission spectra. It is evident that the net
phase shift through a cavity, and through each of the coupled
cavities, is equal top.

The phase shift has its origin in that the cavity in a pho-
tonic crystal resembles a Fabry-Perot cavity. The transmis-

sion maximum occurs at the frequency corresponding to a
standing wave within the cavity. So when the frequency is
changed across the resonance, the induced phase shift be-
comesp. When many cavities are coupled to form a CCW,
each cavity acts as a Fabry-Perot resonator, and the phase
difference between the neighboring maxima in the guiding
band should bep. As a result, the total phase shift across the
waveguide should becomeNp, N being the number of cavi-
ties. In Fig. 5, we show the phase shift across the guiding
band of CCW’s having 12, 13, and 15 cavities, respectively.
The width of the guiding band of all three CCW’s are simi-
lar. This is expected, since for a sufficiently large number of
cavities, the guiding band only depends on the coupling con-
stant and the resonant frequency of a single cavity, as given
by Eq. s5d. We observe that the phase spectra scale propor-
tional to the number of cavities. The phase at the low-
frequency edge of the guiding band is at 4p, which then
advances to 16p, 17p, and 19p at the high frequency edge
of the guiding band. This type of phase shift is also present
across the transmission band of the photonic crystals, where

FIG. 6. Comparison of the transmission spectra of a 737 MZI
ssolid lines, top schematicd to one of its isolated branchessdashed
lines, bottom schematicd. Left panel shows measurements; right
panel shows simulations.

FIG. 4. The phase shiftsthick linesd across a single cavitysbot-
tomd and twosmiddled and threestopd coupled cavities. Thin lines
denote the respective transmission spectrum. Arrows indicate the
phase shift through individual cavities.

FIG. 5. The phaseslines extending from zero on the upper leftd
and transmission spectra of CCW’s consisting ofN=15 ssolid
blackd, 13 sdashed blackd, and 12ssolid grayd cavities, respectively.
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the induced phase shiftsi.e., number of transmission
maximad in the frequency region corresponds to the number
of crystal planes across the sample in the chosen propagation
direction.27,28

IV. PHASE SHIFT ANALYSIS OF MACH-ZEHNDER
INTERFEROMETER

In this section, we conduct a phase shift analysis of the
CCW-based MZI structures in 2D PC’s in view of the results
presented in the preceding section. To our knowledge, the
operation mechanism of the CCW-based MZI in terms of
explicitly measured phase shift differences between the in-
terferometer branches has not been demonstrated before.

We have constructed various MZI structures consisting of
two CCW branches connected via Y junctions to input and
output CCW ports. The input and output ports are along the
GK direction of the PC, each having four cavities. In the
following, we denote the MZI structures by the notation
sm3nd according to the number of cavities only in the
branchessi.e., the cavities in the input and output ports are
not included in the notationd. For instance, 735 denotes a
MZI with 7 cavities on one branch and 5 on the other.

First, we demonstrate that ansn3nd symmetric MZI does
not exhibit a dip in the transmission spectrum, since the field
traversing either branch acquires the same amount of phase
shift. Figure 6 compares the transmission spectrum of a 7
37 MZI to that of an isolated single branch. The measure-
ments on the left panel and simulations on the right panel
both show that the double branch and the single branch ex-
hibit very similar transmission characteristics. We note that
the flatness of the guiding band obtained in the simulations is
not present in the measurements. This is related to the irregu-
larities ssmall disordering of the rodsd of the real PC, which
are not present in the simulations. The fluctuations are more
pronounced for the double branch, as the interfering fields
are more sensitive to small differences in the branches.

In contrast, the transmission spectra of a 735 MZI ex-
hibits a distinct dip atf =16.88 GHz of about260 dB as
shown in Fig. 7. Note also the very good agreement between
the simulation and experiment for both the 737 and 735
MZI structures. In the computed field mode atf
=16.88 GHz, it is evident that the field interferes destruc-
tively at the output Y junction of the 735 MZI.

To analyze the dip, we assume that the field at the output
Y junction can be written as a superposition of the field at
either branch:

FIG. 7. sColor onlined sad Measuredssolid linesd and simulated
sdashed linesd transmission spectra of 737 and 735 MZI struc-
tures, depicted in the middle schematics.sbd Simulated electric field
profile at f =16.88 GHz for 737 sleftd and 735 srightd MZI, re-
spectively. The arrow at the bottom indicates the input port.

FIG. 8. Phasessolid blackd and
transmissionssolid grayd spectra
of 735 sleftd and 834 srightd
MZI structuresssee middle sche-
maticsd. The lower figures show
the transfer function of Ref. 21.
Horizontal dashed lines denote the
odd-p multiples of the phase dif-
ference, whereas vertical dotted
lines denote the zeros of the trans-
fer function.
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Eoutsfdeifoutsfd = E1sfdeif1sfd + E2sfdeif2sfd, s6d

where E1,2sfd and f1,2sfd denote the frequency-dependent
amplitude and phase of the respective branch field. For an
ideal MZI, the amplitude will be independent of the branch.
Consequently, the outgoing field vanishes whenever the
phase difference between the branch fieldsDf=f1−f2 is an
odd multiple ofp swe postpone the discussion of superposi-
tion and equal amplitude assumptions further belowd. In the
preceding section, it is demonstrated that the shift in phase
across the guiding band ofN coupled cavities is equal toNp.
SinceDN=2 for the 735 structure, the difference between
the phase shifts of the respective branches will be equal top
within the guiding band once. Similarly for an 834 struc-
ture, whereDN=4, two interference dips will appear for
Df=p andDf=3p asDf advances from 0 to 4p across the
guiding band. Figure 8 demonstrates the matching between
the odd-p multiples of the phase difference and the transmis-
sion dip.

We have also included transfer function calculations ac-
cording to the simple model of Ref. 20. There, the transfer
function of the MZI with input output directional couplers is
given by

T11sfd = sin2FDN

2
arccosS f − f0

kf0
DG ,

T21sfd = cos2FDN

2
arccosS f − f0

kf0
DG , s7d

which depends only on the eigenfrequency of an isolated
cavity f0, coupling constantk, and the difference in the num-

ber of cavitiesDN. According to this formulation, the trans-
fer function exhibits a dip forDN=2 and two dips forDN
=4 within the guiding band. We observe that both cases are
in good agreement with the measured transmission dips and
the odd-p phase difference positions.

Should we expect a perfect match between the odd-p
multiples of the phase difference and the transmission dip?
We know that the transmission band includes resonance
peaks equal to the number of cavities. Therefore, the trans-
mission amplitude at a particular frequency within the guid-
ing band will be intrinsically different on each of the CCW
branches, containing a different number of cavities, respec-
tively. Hence, the conditionE1sfd=E2sfd may not be satis-
fied, which, in turn causes a mismatch.

Another issue is the coupling: in Sec. II, the cavity cou-
pling is shown to be significant for separations as large as 4
times the lattice period. Thus, for cavities close to the Y
junctions, both intrabranch and interbranch interactions are
present, which renders the superposition idea of isolated
branch fields to an approximation for the full MZI structure.
To demonstrate this, we compare the transmission spectrum
constructed from the superposition of isolated branch fields
to that of the full structure for 735 MZI:

log10uE735e
if735u2 ↔ log10uE7e

if7 + E5e
if5u2. s8d

As can be seen in Fig. 9 the superposed field does indeed
have a dip around that of full MZI, but the discrepancies
throughout the guiding band are evident. Clearly, the details
of interbranch interactions depend on the particular interfer-
ometer geometry.

V. CONCLUSION

In this paper, we have investigated the confinement, cou-
pling properties, and the phase spectra of single- and
coupled-cavity structures. The resonance frequency of cavi-
ties is found to be independent of the confinement strength.
The exponential dependence of the cavity coupling constant
is obtained experimentally, which agrees very well with cal-
culated parameters of the tight-binding formalism. We have
experimentally demonstrated that the phase shift across the
localized mode of a cavity is equal top. In a CCW consist-
ing of N number of cavities, the induced phase shift adds up
exactly toNp. This result is utilized to analyze the transmis-
sion spectra of CCW-based Mach-Zehnder interferometers.
We demonstrate that the phase difference between individual
branches by odd multiples ofp corresponds to transmission
dips in the full Mach-Zehnder structure. Deviations from this
matching are discussed in terms of the interbranch coupling
and of different transmission amplitudes due to the different
number of cavities.

FIG. 9. Comparison of the transmission spectrum measured for
full 7 35 MZI sdashed lined and that of constructed by superposi-
tion of the fields of individual isolated branchesssolid lined.
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