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An experimental and numerical study of the coupling properties of cavity waveguides and the phase ad-
vancement through the coupled cavity waveguides in two-dimensional photonic crystals is presented. We find
that the resonance frequency is insensitive to the confinement strength for cavity and for finite size defects. We
obtain the coupling constant as a function of the distance between two cavities within the tight-binding
formalism experimentally, and show the exponential decay of the coupling strength. By measuring the phase
spectra of coupled cavity waveguidgsCW's), we clearly demonstrate that the phase shift across the guiding
band is equal tiN7, whereN is the number of cavities in the waveguide. This essential behavior is employed
to analyze the transmission response of CCW-based Mach-Zehnder interferometer structures introduced
recently.
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I. INTRODUCTION promotes CCW’s as promising candidates for optical delay

Waveguide structures are essential components of phot§l1€S- An example is the CCW-based Mach-Zehnder interfer-
nic integrated circuits. In photonic crystal®C's), it is ~ ometer(MZl), proposed and demonstrated recently. Salja
proposed and showA® that the electromagnetic wave can €t al. investigated the phase shift induced by nonlinear ef-
be guided through sharp bends and intersections with higfects in CCW-based MZI numerically. Later, Martinezet
transmission characteristics. Various designs for waveguidal.?> demonstrated experimentally a MZI structure, with a
bends have been studied to improve the transmigsidn. simple transfer function model utilizing the difference in the
Following the proposal by Yarivet al,'* coupled cavity —number of cavities of the respective interferometer branches.
waveguidestlCCW’s) in photonic crystals have become an Both studies emphasize the compact size of the structures
intense research subject in recent years, as they provide sorif@t is required to attain the operational phase shiftroTo
advantages over conventional PC-based wavegdid¥s. this end, we measure the phase delay of CCW's, and dem-
These advancements open a way to construct extremefnstrate that the phase shift through a cavity is equat,to
compact and efficient integrated photonic circ8i¢d>6Nu-  which then extends linearly thi7 for a CCW consisting of
merous CCW-based fundamental optical device component¥ cavities. This leads to a clear interpretation of the opera-
(e.g., splitters, switches, channel add-drop filtérave been tion of a CCW-based MZI in terms of the phase difference
demonstrated in the microwave regime and are being readidéle., difference in the number of cavitiebetween the re-
for the optical regime. In particular, CCW’s can be utilized to spective branches of the interferometer, and provides support
construct ultracompact optical delay lines which has a directo the transfer function model introduced beféte.
impact on the overall device siz2éThe application potential This paper is organized as follows: In the second section,
of CCW's drives in turn the investigation of basic optical we describe the experimental setup and present the measure-
properties in detail, such as the coupling properties ofments of confinement effects on a single cavity and the cou-
cavities. Laret al'® pointed out this necessity and conductedpling strength between two cavities as a function of the in-
a systematic analysis of defect coupling in one- and twotercavity distance. The measurement of the phase spectra of
dimensional photonic crystals using transfer matrixsingle cavity and CCW structures is discussed in the third
formalism. section. In the fourth section, we employ the results of the

In the first part of the paper, we aim to extend the investhird section to analyze the operation of CCW-based MZI
tigation of the coupling properties of CCW’s experimentally structures. We conclude by summarizing the results.
and numerically. In particular, we show the exponential de-
cay of localized modes within the cavities, by measuring the
coupling strength of two cavities as a function of the inter-
cavity distance. For this purpose, we employ the tight-
binding formalism. Surprisingly, we find that even the result- The photonic crystal in this study consists of a hexagonal
ing eigenmodes of two merged cavities obey the tight-array of cylindrical alumina rods with radius=1.575 mm
binding formalism very well, despite the anticipated strongand a refractive index ofi=3.13 at microwave frequencies.
interaction between the individual cavity modes. The lattice constant is chosen as7.0 mm. The transmis-

In the second part of the paper, we investigate the phassion and phase spectra are measured using a network ana-
delay spectra of single and coupled cavity structures. It idyzer and a set of horn antennas in TM polarizatietectric
well known that, in addition to improved transmission char-field E perpendicular to the plane of two-dimensioi2D)
acteristics, the slow group velocity at the guiding band edgephotonic crystal In all measurements, the major propaga-

IIl. COUPLED CAVITIES: CONFINEMENT EFFECTS
AND THE COUPLING CONSTANT
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FIG. 1. Measuredsolid lineg and simulated(dashed lines FIG. 2. Transmission spectra for a defect of radius
transmission spectrum of a single cavity for the numbégray) =0.645 mm(left pane) and of a defect of radius=6.06 mm(right
and 3(black of confining layers. Top right: Schematics of the re- pane). Upper(lower) curves correspond to wedktrong confine-
spective structuregull lateral width is not shown ment. Schematics display the strong confinement structures for re-

. . .. . . . spective defect sizes.
tion direction is set along thEK direction of the photonic

crystal, unless otherwise noted. Numerical simulations based ,
on the finite-difference time-domaifFDTD) method are MOVing or adding rods to cap laygrsay alter the frequency
used to compare with experimental data. of the cavity and cause a shift of similar magnitude.

We first measured the transmission spectrum of the uni- Although the confinement strength does not alter the reso-
form photonic crystal, which exhibits a band gap betweernance mode, the spectral broadening of the mode depends on
12.8 and 18.7 GHz. A single cavity is formed by removing ait. We find that adding one more cap layer to each end of the
rod within the photonic crystal, which appears as a localize@rystal increases the confinement drastically, evident from
mode within the gap of the transmission spectrum. For théhe decrease of the spectral width of the mode.
investigation of the confinement, two PC structures are con- |f two or more cavities are present, it is well known that
structed having % 29 and 7x 29 layers, respectively. Since the eigenmode of the single cavity splits into coupled modes.
the crystal is much thicker along the lateral direction, theThis phenomenon is investigated experimentally and de-
confinement depends on the number of layers around thecribed within the classical wave analog of the tight-binding
cavity along the propagation direction, which we denote a§TB) approximation for photonic crystal structures in
“cap layers” in this paper. For the present structures, théletail!*=*421=23n the following, we will present the depen-
number of cap layers are 2 and 3, respectively. Figure flence of the coupling parameter to the intercavity distance
shows the transmission spectra of a single cavity for twdor two cavities. Based on the formulation of Ref. 12, the
confinement strengths, which are depicted by the schematigigenfrequencies of two coupled cavities are given by
in the figure. The cavity mode frequency located fat

=16.898 GHz appears to be independent of the confinement w0 o= () [1+B4
1,2~ ]
’ 1 + aq

1)

strength. This agrees well with the transfer matrix results
where no significant dependence of resonant frequency on
defect size is reportet. where «; and B, are the first-order coupling parameters de-
It is evident that the spectral width and the transmissiorfined as
amplitude shrinks with increasing confinement, as expected.
We further note that the dashed lines obtained by FDTD _ Y = e as
measurements are in very good agreement with the measure- al_f diz(NEq(F) - Ea(7 - A, (29
ments.
Figure 2 shows the transmission spectra for two defects of
rgd_ii 0.645 and 6.06 mm, fespectively. '_I'he larger defect ex- Bl:f dreo(r = AR)Eq(F) - Eq(F — AX). (2b)
hibits two modes, from which only the high-frequency mode
is shown on the figure. For the small defect, the resonance R
frequency isf=15.98 and 16.02 GHz for strong and weak Here, Eq(r) describes the single-cavity modeg(r) and
confinements, respectively. In the case of large defect, the(f)=&(r—AX) are the dielectric functions of the single- and
resonance occurs dt=16.90 and 16.92 GHz, respectively. coupled-cavity systems, respectively, ahds the distance
Even though a shift of resonance frequency is noticeable, wbetween the cavities.
refrain from attributing this shift solely to the finite size of  For an array of cavities, where each cavity interacts
the defect. This is because the small distortions of the rosveakly with neighboring cavities, a defect bafwiaveguid-
positions while modifying the confinement strengtle., re-  ing band is formed. Similar to the two-coupled-cavity case,
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TABLE I. The resonant frequencies and corresponding tight-binding coupling constants of two coupled
cavities for different intercavity distances, obtained by measurements and calculated from FDTD simulations.

Experiment Simulation
Distance f1 (GHz) f, (GHz) K f1 (GH2) f, (GH2) K
a 15.778 17.964 0.1291 15.747 17.971 0.1313
2a 16.650 17.130 0.0283 16.657 17.118 0.0273
3a 16.822 16.948 0.0071 16.825 16.940 0.0063
da 16.905 16.992 0.0015 16.867 16.894 0.0011

the eigenmode of this waveguiding band can be written as the extension of this particular case to a waveguigbich,
superposition of the individual cavity modes. Rocavities  actually becomes a straight waveguideay deviate from TB
this can be written as formalism in its transmission characteristies.

We note that the exponential dependence is obtained be-
tween the nondegenerate fundamental mode of the cavities.
In the case of modes with nonisotropic spatial extension, the
overlap of the fields, and hence the coupling constant as a

A simple expression for the dispersion relation of thefynction of intercavity distance may deviate from the expo-
waveguiding band is given by nential behavior.

E(F) = Ep>, 6 ™AE( (7 — nAR). 3)

w(K) =Q[1 + x cogkA)], (4)
. . . lll. THE PHASE SPECTRA OF COUPLED CAVITIES

wherek=|B;- ;| is the coupling constant parameter, which
can be obtained from the splitting of the eigenmodes of two The phase information of the transmitted electromagnetic
coupled cavities. After obtainin@, w,, and w, from mea- wave is required to determine the dispersion of PC struc-
surements or simulations, one can determineand 8, val-  tures. Various experimental studies are performed to deter-
ues by using Eq€2a) and(2b). The bandwidth of the guided mine the band structure of two-dimensional and three-
modes is proportional to the coupling constant and to thelimensional photonic crystals for different frequency
single-cavity frequency regimes’*2°The frequency-dependent phase shift is usually
measured by time-domain spectrosc8pif or using a net-
work analyzer. Robertsogt al 28 investigated the band struc-

. . ) ture of alumina based 2D PC's using coherent microwave
Thus,_an alternqtlve method fqr obtaining the cogplmg CONyransient spectroscopy. Kitahagaial2” measured the ampli-
stant is measuring the bandwidth of the waveguide and thg,je and phase shift of transmission spectra of

resonance frequency of an isolated cavity. methylpentene-polymer-based photonic crystals by terahertz
Based on this formalism, we investigate the dependencgmne_domain spectroscopy, and found out that the phase shift

of the coupling constant to the distance between the cavme%er crystal plane is equal te. On the other hand, we have

Two cavities are formed by removing rods within the PC.¢5nq" 10 our knowledge, that a direct measurement of the

The distance between the cavities is changed by an integghase shift through CCW's was not reported before, notwith-
multiple of the crystal period frona to 4a. By determining

the eigenfrequencies from the transmission spectra, the TB o
coupling constant is calculated. Table | lists the measured 10 _

. . . ® Experiment
and simulated data for the eigenmode frequencies of two [ O Simulation
coupled cavities and the corresponding calculated TB cou- a m - - Fit: 0.55¢ 14602
pling constant.

In Fig. 3, we plot the calculated coupling constant as a
function of the distance between the cavities. Since the spa-
tial extent of the modes decays exponentially, the coupling
constant, which essentially depends on the overlap integral
of the eigenmodes, also shows an exponential decay. Here,
we observe an interesting behavior: when the intercavity dis-
tance isa, the two cavities actually merge to into a single
multimode cavity of size & and the modes of this cavity are 107
strongly interacting. Yet, the resulting mode splitting can be 1 2 ga 3 4
described within the TB formalism and the coupling constant
fits to the exponential decay behavior very WEH, as shown in FIG. 3. Measuredsolid circles and simu|a’[edopen squares
Fig. 3. However, second nearest neighbor couplings becomght-binding coupling constant as a function of the distance be-
significant with decreasing intercavity distance, thereforefween the cavities. The dashed line denotes the exponential fit.

Aw = 2k(). (5)

Coupling constant «
al
L+
X4
4
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‘3'156_4 _' A ] — ] —50 sion maximum occurs at the frequency corresponding to a
standing wave within the cavity. So when the frequency is
-8 0 ) )
changed across the resonance, the induced phase shift be-
-8.5 -0 comess. When many cavities are coupled to form a CCW,
& =9 P;/ each cavity acts as a Fabry-Perot resonator, and the phase
% o 1-20¢ difference between the neighboring maxima in the guiding
ﬁ_ ' -—30'? band should ber. As a result, the total phase shift across the
a-10 g waveguide should beconi¢sw, N being the number of cavi-
~10.5 -40= ties. In Fig. 5, we show the phase shift across the guiding
; o : . band of CCW'’s having 12, 13, and 15 cavities, respectively.
" 6.8 16.85 16.9 16.95 17'50 The width of the guiding band of all three CCW'’s are simi-
frequency (GHz) lar. This is expected, since for a sufficiently large number of

- _ _ cavities, the guiding band only depends on the coupling con-
FIG. 4. The phase shifthick lines across a single cavitoot-  gtant and the resonant frequency of a single cavity, as given
tom) and two(middle) and threg(top) coupled cavities. Thin lines by Eq. (5). We observe that the phase spectra scale propor-
denote the respective transmission spectrum. Arrows indicate thﬁonal to the number of cavities. The phase at the low-
phase shift through individual cavities. frequency edge of the guiding band is at,4which then

. L . s . advances to 1%, 177, and 197 at the high frequency edge
standing the studies involving CCW's in the context of opti- of the guiding band. This type of phase shift is also present

ca}l delay lines. I_n this section qf the paper, we are addressmgcross the transmission band of the photonic crystals, where
this overlooked issue. As we will present shortly, understand-

ing how the phase advances through a CCW provides a clear
and solid basis for interpreting the operation of CCW-based
MZI structures.

The phase measurements in our study are performed with  -10
an HP 8510C network analyzer. The instrument itself pro- 5
vides the phase of the transmitted sign@,, in the
S-parameter conventignbetweer -, + ], as a function of
frequency. These raw data are then “unwrapped” by adding
27 at the 4 jumps, to obtain the phase spectra. Since the
absolute phase is meaningless, the phase is measured witr
respect to a calibration. We first perform the calibration in —
air, by removing the photonic crystal between the antennas, \ ; /
and then measure the relative phase of the relevant structure. 45“ :P}] y

Figure 4 shows the measured phase change through single | TR . il . . -
cavity and two and three coupled cavities along with the - s R
corresponding transmission spectra. It is evident that the net
phase shift through a cavity, and through each of the coupled FIG. 6. Comparison of the transmission spectra oPa77MZI
cavities, is equal tar. (solid lines, top schematido one of its isolated branchédashed

The phase shift has its origin in that the cavity in a pho-lines, bottom schematic Left panel shows measurements; right
tonic crystal resembles a Fabry-Perot cavity. The transmispanel shows simulations.
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FIG. 7. (Color online (a) Measuredsolid lineg and simulated
(dashed linestransmission spectra ofX¥7 and 7<x5 MZI struc-
tures, depicted in the middle schematid®.Simulated electric field
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spectively. The arrow at the bottom indicates the input port.

the induced phase shifti.e., number of transmission
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IV. PHASE SHIFT ANALYSIS OF MACH-ZEHNDER
INTERFEROMETER

In this section, we conduct a phase shift analysis of the
CCW-based MZ| structures in 2D PC’s in view of the results
presented in the preceding section. To our knowledge, the
operation mechanism of the CCW-based MZI in terms of
explicitly measured phase shift differences between the in-
terferometer branches has not been demonstrated before.

We have constructed various MZI structures consisting of
two CCW branches connected via Y junctions to input and
output CCW ports. The input and output ports are along the
I’K direction of the PC, each having four cavities. In the
following, we denote the MZI structures by the notation
(mxn) according to the number of cavities only in the
branchegqii.e., the cavities in the input and output ports are
not included in the notation For instance, X5 denotes a
MZI with 7 cavities on one branch and 5 on the other.

First, we demonstrate that &nx n) symmetric MZI does
not exhibit a dip in the transmission spectrum, since the field
traversing either branch acquires the same amount of phase
shift. Figure 6 compares the transmission spectrum of a 7
X7 MZI to that of an isolated single branch. The measure-
ments on the left panel and simulations on the right panel
both show that the double branch and the single branch ex-
hibit very similar transmission characteristics. We note that
the flatness of the guiding band obtained in the simulations is
not present in the measurements. This is related to the irregu-
larities (small disordering of the rodof the real PC, which
are not present in the simulations. The fluctuations are more
pronounced for the double branch, as the interfering fields
are more sensitive to small differences in the branches.

In contrast, the transmission spectra of & ¥ MZ| ex-
hibits a distinct dip atf=16.88 GHz of about-60 dB as
shown in Fig. 7. Note also the very good agreement between
the simulation and experiment for both thex7 and 7x5
MZI structures. In the computed field mode &t
=16.88 GHz, it is evident that the field interferes destruc-
tively at the output Y junction of the X5 MZI.

maxima in the frequency region corresponds to the number To analyze the dip, we assume that the field at the output
of crystal planes across the sample in the chosen propagatidfjunction can be written as a superposition of the field at
direction?”28

\/

0
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165 17 175
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18
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ransmission (dB

t

FIG. 8. Phasé¢solid black and
transmission(solid gray spectra
of 7x5 (left) and 8x4 (right)
MZI structures(see middle sche-
maticy. The lower figures show
the transfer function of Ref. 21.
Horizontal dashed lines denote the
odd-7 multiples of the phase dif-
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|

ference, whereas vertical dotted
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fer function.
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ber of cavitiesAN. According to this formulation, the trans-
fer function exhibits a dip fodAN=2 and two dips forAN

=4 within the guiding band. We observe that both cases are
in good agreement with the measured transmission dips and
the odd+r phase difference positions.

Should we expect a perfect match between the m=dd-
multiples of the phase difference and the transmission dip?
We know that the transmission band includes resonance
peaks equal to the number of cavities. Therefore, the trans-
mission amplitude at a particular frequency within the guid-
ing band will be intrinsically different on each of the CCW
branches, containing a different number of cavities, respec-
tively. Hence, the conditiorc;(f)=E,(f) may not be satis-

. fied, which, in turn causes a mismatch.
Frequengy GHz) 18 _Another issue is the coupling: in Sec. Il, the cavity cou-
pling is shown to be significant for separations as large as 4

FIG. 9. Comparison of the transmission spectrum measured foiimes the lattice period. Thus, for cavities close to the Y

full 7 x5 MZI (dashed lingand that of constructed by superposi- junctions, both intrabranch and interbranch interactions are

—10F

\N]
(=]

W
(=)

TraqsmissionI (dB)

—40}

tion of the fields of individual isolated branchésolid line). present, which renders the superposition idea of isolated
branch fields to an approximation for the full MZI structure.
Egul(f)e %ot = E, ()@ + E,(f)e 42, (6)  To demonstrate this, we compare the transmission spectrum

constructed from the superposition of isolated branch fields
where E; 5(f) and ¢, (f) denote the frequency-dependent o that of the full structure for ¥ 5 MZI:
amplitude and phase of the respective branch field. For an rel2 5 ]2
ideal MZI, the amplitude will be independent of the branch. l0g10| E7xs€ 75| = log; | E,€%7 + Ese/ 5|2, )

Consequently, the outgoing field vanishes whenever th@g can pe seen in Fig. 9 the superposed field does indeed
phase difference between the branch fidlds=¢,-¢,isan  hayve a dip around that of full MZI, but the discrepancies
odd multiple ofa (we postpone the discussion of SUperposi-ihroughout the guiding band are evident. Clearly, the details

tion and equal amplitude assumptions further beldw the ot jnterpranch interactions depend on the particular interfer-
preceding section, it is demonstrated that the shift in phasgmeter geometry.

across the guiding band df coupled cavities is equal fé7r.

SinceAN=2 for the 7X 5 structure, the difference between
the phase shifts of the respective branches will be equal to V. CONCLUSION
within the guiding band once. Similarly for anx84 struc-

ture, whereAN=4, two interference dips will appear for In this paper, we have investigated the confinement, cou-

pling properties, and the phase spectra of single- and

A¢p=m andAp=37 asA ¢ advances from 0 to#A across the . .
quiding band. Figure 8 demonstrates the matching betwee%OUpled'CaV'ty structures. The resonance frequency of cavi-
; ties is found to be independent of the confinement strength.

the odd+r multiples of the phase difference and the transmis- ) . ;

sion dip. _The ex_ponentlal qlependence pf the cavity coupling constant
We have also included transfer function calculations ac:> obtained experimentally, \_Nhlch_ag_rees very _vveII with cal-

cording to the simple model of Ref. 20. There, the tranSfeI;ulated parameters of the tight-binding formalism. We have

function of the MZI with input output directional couplers is expe.nmentally demonstratgd that the phase shift across the
given by localized mode of a cavity is equal te. In a CCW consist-

ing of N number of cavities, the induced phase shift adds up
. ,| AN f—1o exactly toN7. This result is utilized to analyze the transmis-
Tu(f) = smz{—arccoék—foﬂ, sion spectra of CCW-based Mach-Zehnder interferometers.
We demonstrate that the phase difference between individual
f—f, branches by odd multiples of corresponds to transmission
" ) : (7)  dips in the full Mach-Zehnder structure. Deviations from this
matching are discussed in terms of the interbranch coupling
which depends only on the eigenfrequency of an isolateé@nd of different transmission amplitudes due to the different
cavity f, coupling constank, and the difference in the num- number of cavities.

T,y(f) = cos{ A7Narcco<
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