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We study the frequency dependence of the effective electromagnetic parameters of left-handed and related
metamaterials of the split ring resonator and wire type. We show that the reduced translational symmetry
speriodic structured inherent to these metamaterials influences their effective electromagnetic response. To
anticipate this periodicity, we formulate a periodic effective medium model which enables us to distinguish the
resonant behavior of electromagnetic parameters from effects of the periodicity of the structure. We use this
model for the analysis of numerical data for the transmission and reflection of periodic arrays of split ring
resonators, thin metallic wires, cut wires, as well as the left-handed structures. The present method enables us
to identify the origin of the previously observed resonance-antiresonance coupling as well as the occurrence of
negative imaginary parts in the effective permittivities and permeabilities of those materials. Our analysis
shows that the periodicity of the structure can be neglected only for the wavelength of the electromagnetic
wave larger than 30 space periods of the investigated structure.
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I. INTRODUCTION

Recent progress in studies of left-handed metamaterials1

sLHMsd confirmed that the fabrication of structures with
negativeeffectivepermittivity and permeability, and their ap-
plication in technical praxis is possible. The most promising
structures are based on the combination of periodic arrays of
metallic split ring resonatorssSRRsd and thin metallic wires,
a design proposed theoretically by Pendryet al.2–4 and ex-
perimentally verified by Smithet al.5–7

It is assumed that in a well defined frequency interval
both effective permittivity and permeability of LHM are si-
multaneously negative. Consequently, also the refractive in-
dex is negative.8 This theoretical prediction was supported
experimentally by measurements of the transmission of the
electromagneticsEMd wave through the LHM: A transmis-
sion peak was observed in the frequency region where the
LH band is expected.5,6 Negativeness of the index of refrac-
tion was verified experimentally by the Snell’s law
experiment7 and confirmed later by other experiments.9,10

Numerical simulations were performed which also observed
a transmission peak in the resonant frequency interval.11–13

Effective electromagnetic parameters were calculated14 by
comparison of numerically obtained transmission and reflec-
tion amplitudes of the LHM with theoretical formulas for a
homogeneousslab. The obtained results confirmed that the
refractive index of the LHM is indeed negative in the reso-
nant frequency interval. Moreover, the obtained frequency
dependence of the effective permittivity and permeability
also agreed qualitatively with theoretical predictions. In par-
ticular, the effective magnetic permeability shows a resonant
behavior

msvd = 1 −
vmp

2 − vm
2

v2 − vm
2 + igv

, s1d

typical for lattice of SRRsRef. 4d in the vicinity of the mag-
netic resonance frequencyvm. The effective permittivity is
determined by the electric response of the array of thin
wires3,15–17

«svd = 1 −
vp

2

v2 + igv
s2d

and is negative if the frequency is smaller than the plasma
frequencyvp. Transmission data, obtained using either the
transfer matrix method12 or commercial software18 was ana-
lyzed to find the dependence of the resonance frequencyvm
on the structural parameters of the SRR and on the design of
the unit cell of the LHM structure.

Further progress in numerical methods brought more ac-
curate data and strong evidence that the effective parameters
of the LHM differ considerably from the theoretical predic-
tion s1d ands2d. Although the main properties—resonant be-
havior of the magnetic permeability atvm and negativeness
of the effective permittivity—are clearly visible in the data,
the effective medium picture is spoiled by partially very sig-
nificant anomalies.

Resonance-antiresonance coupling. We expect the electric
and magnetic response of the discussed metamaterials to be
independent from each other. However, whenever there is a
resonance in Rem, we simultaneously observe an antireso-
nant behavior in Re« sRefs. 14 and 19–22d and vice versa.23

The antiresonant structures in the real part are accompanied
by a negative imaginary part.20,23
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Misshapen, truncated resonances. The divergence in Ren
appears to be cutoff at the edges of the first Brillouin zone
and, in particular, the negative regions of the magnetic reso-
nance inm and cut-wire resonance in« do not return from
large negative real part but seem to saturate in a rather shal-
low behavior. The corresponding absorption peak in the
imaginary parts is misshapen and highly asymmetric too.23

Discrepancy between n and z about the positions of the
resonances. We expect the peakssor zerosd in the index of
refraction and the impedance to appear exactly at the reso-
nance frequency. From the simulations, however, we find
different frequencies fromn and z, respectively. This leads,
for instance, to an “internal structure” of the magnetic reso-
nance as shown in Figs. 5 and 6. This structure cannot easily
be explained within the assumed effective medium picture.23

Additional spectral structures. Apart from structures
around the anticipated contributions of the metamaterial’s
constituents, we observe a lot of additional structure, espe-
cially at higher frequency, which cannot be accounted for.

The above described observation, especially the negative-
ness of the imaginary part of effective permittivity or perme-
ability, raised objections24,25 of other groups. Efros25 argued
that the LHM cannot be approximated by a homogeneous
system because of the periodicity of the metamaterial.17,26,27

In this paper, we show that the observed artifacts in the
homogeneous effective approximation are quite generic.
They are given by the periodic structure of the investigated
metamaterials. The periodic structure becomes important
when the wavelength of the electromagnetic wave is compa-
rable with the lattice structure of the material.23 We proposed
a more general description of the LHM, based on the concept
of a periodic effective mediumsPEMd. This method enables
us to distinguish between the resonant frequency dependence
corresponding to Eq.s1d and effects of the periodicity of the
structure. We apply the PEM method for the analysis of nu-
merical data obtained by the transfer matrix methodsTMM d.

The paper is organized as follows. In Sec. II we first ex-
plain basic ideas of the homogeneous effective medium
sHEMd. Special attention is given to the correction of the
phase of the EM wave at the interfaces, which is crucial for
any retrieval procedure.

In Sec. III we define and analyze one dimensional peri-
odic structures. The analyzed medium consists of thin slabs
of homogeneous LH material separated by slabs of vacuum.
We show that the approximation of such periodic medium by
a homogeneous one give us effective parameters« and m
which possess unusual frequency dependences, similar to
those observed when we approximate metamaterials by a ho-
mogeneous medium. This proves that the periodicity of
metamaterial must be taken into consideration in the analysis
of the effective parameters.

The periodic effective medium is analyzed in two differ-
ent formulations: continuoussSec. III Ad and latticesSec.
III B d. The latter is more relevant for the analysis of numeri-
cal data since all known numerical algorithms use spacial
discretization.

In Sec. IV we analyze transmission data, observed from
numerical simulations of periodic lattices of SRR, LHM, and
cut wires. We map these structures to periodic effective me-
dia which consist of homogeneous slabs separated by

vacuum. In this formulation,« and m of the homogeneous
slabs are free from any modifications of the resonant behav-
ior. To show the role of the periodicity of the metamaterials
more clearly, we also analyzed a lattice of SRR in which we
filled the gaps of the SRR by a dielectric with very strong
dielectric permittivity. This decreases the magnetic resonant
frequency so that the wavelength of the incident EM wave is
25 times larger than the lattice period. We show that effective
parameters again do not possess any deviations from reso-
nant formulas1d.

A discussion of the applicability of various proposed
models to the analysis of transmission data is given in Sec.
V. We discuss how the periodicity and anisotropy of the
structure influence the transmission amplitudes and, subse-
quently, the effective parameters of the metamaterials. Final
conclusions are given in Sec. VI.

II. HOMOGENEOUS EFFECTIVE MEDIUM

For the one-dimensional plain wave scattering problem at
a homogeneous finite slab it is straightforward to obtain the
scattering formulas. For the transfer matricesT0 for a single
slice of vacuum andTslab for a single slice of homogeneous
material with the thickness d we find in wave
representation44

T0sdd = Seikd 0

0 e−ikdD, Tslabsdd = Sasdd bs− dd
bsdd as− dd

D
with the elements

asdd = cossqdd +
i

2
Sz+

1

z
Dsinsqdd, s3d

bsdd =
i

2
Sz−

1

z
Dsinsqdd. s4d

In the continuum formulation and for normal incidence the
momentumq inside the slab is related to the momentumk in
the vacuum by the index of refractionnskd=q/k, the imped-
ancez is defined byz=msvdk/q=q/ f«svdkg for the TE and
TM mode, respectively. Here,msvd and «svd denote the
frequency-dependent complex permeability and permittivity
of the homogeneous medium. On the lattice, i.e., when we
are going to compare with TMM simulation results, we have
to take the modified dispersion relations 2−2 cosskd−v2=0
in the vacuum and 2−2 cossqd−msvd«svdv2=0 inside the
slab into account. Then we have a modifiedq=acosf1
−m«s1−coskdg which gets noticeable at higher frequencies.
Using the interrelation between the transfer matrix and the
scattering matrix which defines the transmissionst±d and re-
flection sr7d amplitudes

S= S t+ r+

r− t−
D, T = St+ − r+t−

−1r− r+t−
−1

− t−
−1r− t−

−1 D , s5d

we can calculate the transmission and reflection amplitudes
for a sample composed of a left vacuum slice of lengtha,
followed by N homogeneous unit cells of lengthL in propa-
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gation direction, and terminated by a right vacuum slice of
lengthb,

t− =
e−ikNL

as− dde−iksa+bd , s6d

r+ = e−ikNLbs− dde−iksa−bdt−. s7d

In order to relate to the simulated scattering amplitudes com-
puted numerically by the TMM by decomposition of the EM
waves in the vacuum right of the sample with respect to the
vacuum wave base left of the sample, it is convenient to
introduce the normalized scattering amplitudesT and R
which, afterN unit cells, take the form

T = t−eikNL = a−1s− ddeiksa+bd, s8d

R= bs− dde−iksa−bdT. s9d

In the continuum the scattering amplitudes of the homoge-
neous slab are typically defined from interface to interface of
the sample, i.e., assuminga=b=0. In the numerical simula-
tion this is not possible because of the lattice: we always
have to make 1/2 vacuum-transfer-matrix step from the
last left vacuum slice into the sample and another 1/2
vacuum-transfer-matrix step out of the sample onto the
first right vacuum slice. Therefore, the TMM scattering
amplitudesTsTMM d andRsTMM d are related to the normalized
T andR involving an additional vacuum-phase compensation
T=e−ikTsTMM d andR=e+ikRsTMM d.

Now we can resolve the above scattering formulas with
given amplitudesT and R obtained from the simulationsor
measurementd of a metamaterial with respect to the material
parameters impedancezsvd and index of refractionnsvd. If
the solutions aresvirtuallyd independent on the length of the
sample those parameters define the homogeneous effective
mediumsHEMd representationsor approximationd of the re-
spective metamaterial. Then we have14

zeffsvd = ±Îs1 + Rd2 − T2

s1 − Rd2 − T2 , s10d

neffsvd = ±
1

kL
arccosS1 − R2 + T2

2T
D +

2p

kL
m, s11d

with mPZ. Note that we obtainzeff and neff from the scat-
tering amplitudes only up to a common sign and the real part
of the effective index of refraction, Reneff only as a residue
class. The former issue can be resolved by imposing addi-
tional physical requirements, for instance Rezù0 scausal-
ityd. The problem of the residue class for Reneff can be ad-
dressed by considering different lengthhLij, i P I ,Z. Then
we obtain a system of linear congruences, the solution of
which—if any—is a reduced residue class modulo
2p / sk gcdhLijd given by the greatest common divisor of the
lengthsLi. Since due to the inherent periodic structure of real
metamaterials in simulations and experiments the lengths of
the sample can only be integral multiples of the unit cell’s
length, the minimum possible ambiguity for Reneff will be a
residue class modulo 2p / skLd where L is the length of a

single unit cell. For physical reasons we can assume a
smooth frequency dependence between resonances which en-
ables us to obtain Reneffsvd as the corresponding residue
class of piecewise continuous functions. The correct branch
then has to be chosen exploiting additional physical informa-
tion or assumptions of the model such as the behavior of
neffsvd at the plasma frequency, in resonance induced trans-
mission gaps and periodicity induced band gapssdiscussed
laterd. For knownneffsvd andzeffsvd the effective permeabil-
ity m and permittivity« can be defined as

meffsvd = neffsvdzeffsvd, s12d

«effsvd = neffsvd/zeffsvd, s13d

respectively.
Results for the effective parameters of the HEM approxi-

mation of simulated metamaterials such as arrays of SRR or
cut wires, LHMs, and even multigap SRRs have been pub-
lished by several authors.7,13,14,19,22,23,28They all expose de-
tails which are in conflict with the simple effective medium
behavior in terms of a resonantmsvd and a plasmonic«svd,
originally proposed by Pendry, even under the assumption of
an additional electric response of the SRR. Typical examples
are also shown in Figs. 5, 6, 9, and 10. All results show
resonance/anti-resonance coupling inmeffsvd and«effsvd ac-
companied by negative imaginary parts, apparently different
resonance frequencies forneff and zeff, the cutoff of the ex-
pected resonant positivesSRRd or negativesLHM d index of
refraction, a misshapen, strongly asymmetric anticipated
magnetic resonance inm for the SRR and LHM or electric
resonance in« for the cut wire, and finally a lot of unex-
plained additional structureserratic stop bands and pass
bandsd at higher frequency.

Our extensive numerical simulations suggested that com-
mon cause for all these problems has to be sought in the
inherent periodicity, always present in the artificial metama-
terials as they are composed of repetitions of a single unit
cell. To prove that the behavior is generic and really inde-
pendent on the details of the unit cell, and that we can repro-
duce each of the effects above purely as a consequence of
periodicity in the propagation direction, we investigated the
most simple model for an effective medium with a nontrivial
periodicity.

III. PERIODIC EFFECTIVE MEDIUM

To study the impact of the periodicity, or more precise the
reduced translational symmetry of the sample in propagation
direction, we consider a sample composed of a repetition of
the unit cell shown in Fig. 1, finite in direction of propaga-
tion and infinite perpendicular to it. The unit cell consists of
a thin homogeneous core of thicknessd characterized by
arbitrarymsvd and«svd, sandwiched by two slabs of vacuum
with thicknessa andb which break translational invariance.
L is the length of one unit cell,N the number of unit cells in
propagation direction. To make a connection to our metama-
terials we choose a simple Lorentz-type resonant form of
msvd and/or «svd to represent the magnetic and cut-wire
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response of the SRR. To model the LHM we would add a
plasmonic term in«svd to account for the response of the
continuous wires. Now we can calculate the scattering am-
plitudes for this model and subject them to the HEM inver-
sion discussed in the previous section. The descriptionsor
approximationd of the scattering amplitudes for a given
metamaterial in terms of the effective parameters of such a
periodic medium as defined in Fig. 1 will be denoted a “pe-
riodic effective medium”sPEMd.

The following results will show that this periodic medium
can expose all the problematic effect discussed above. In a
subsequent section we shall then demonstrate that this also
applies to the simulated real metamaterial. Their effective
behavior can be decomposed into a “well-behaving” effec-
tive response of the resonances and a contribution of periodic
structure described by the PEM.

A. Continuum formulation

With the transfer matricesT0 andTslab introduced above,
we can express the total transfer matrix of a finite slab of the
periodic effective medium defined in Fig. 1 in the form

SA8

B8
D = T0

−1sNLdfT0sbdTslabsddT0sadgNSA

B
D .

As expected from thez-inversion symmetry both transfer
matricesT0 and Tslab are unimodular, obviously is detT0
=1 and a short calculation yields detTslab=asddas−dd
+b2sdd=1. Therefore we can easily calculate theNth power
of the unimodular 232 matrix above by diagonalizing it and
computing theNth power of its eigenvalues.30 Using the in-
terrelation between the transfer matrix and the scattering ma-
trix, we obtain the transmission and reflection amplitudes
corresponding to those computed numerically by the TMM

t− =
e−ikNL

as− dde−iksa+bdUN−1spd − UN−2spd
, s14d

r+ = e−ikNLbs− dde−iksa−bdUN−1spdt−. s15d

Here, theUN=UNspd are the Chebyshev polynomials of the
second kind,Unszd=sinfsn+1dacoszg / s1−z2d1/2, taken at the
argument

p = cossqddcosfksL − ddg −
1

2
Sz+

1

z
DsinsqddsinfksL − ddg.

s16d

The wave vectorq=nsvdk and the impedancezsvd refer to
the homogeneous core of the unit cell. For the normalized
scattering amplitudesT andR after N unit cells we find

T = fas− dde−iksa+bdUN−1spd − UN−2spdg−1, s17d

R= bs− dde−iksa−bdUN−1spdT. s18d

Now we shall discuss what happens if we try to approxi-
mate the explicitly periodic medium discussed above by a
homogeneous effective medium. This basically corresponds
to our previous attempts to describe the periodic metamate-
rials by an homogeneous effective medium. We have two
options: First, we could simply consider the analytic scatter-
ing amplitudess17d and s18d derived above to be those of a
homogeneous system and try to solve for effective material
parameters«effsN,vd andmeffsN,vd. This has the advantage
that the approximation can deal with a possible residual
length dependence of the approximate homogeneous me-
dium, leaving an explicit possibility to assess the quality of
the approximation. The disadvantage is that we have to
handle the rather complicated structure of the formulas aris-
ing from the Chebyshev polynomials. The second approach
is to assume that an exact correspondence of the periodic
effective medium to an homogeneous effective medium ex-
ists. This assumption is supported by the length indepen-
dencesafter appropriate phase compensationd of the conven-
tionally inverted simulation data. If there is such a
homogeneous effective medium we can write the transfer
matrix of the periodic medium in terms of the transfer matrix
for the homogeneous slab

T0
−1sNLdfT0sbdTslabsddT0sadgN = T0

−1sNLdseffdTslabsNLd,

s19d

which implies in particular for a system length of only a
single unit cell

T0sbdTslabsddT0sad = seffdTslabsLd. s20d

Since for a homogeneous slab the identityTslab
N sLd

=TslabsNLd holds, finding aseffdTslabsLd that satisfies Eq.s20d
in turn implies length independence of the homogeneous
effective medium description. Note thatTslabsdd has only
two independent elements, becausebsdd=−bs−dd is anti-
symmetric and the determinantasddas−dd+b2sdd=1 is
fixed, such that we can calculate the matrix elementsasdd
=f1−b2s−ddg /as−dd and bsdd=−bs−dd from as−dd, bs−dd.
The assumptions20d imposes a restriction on the boundaries
of the periodic medium in propagation direction. The off-
diagonal elements ofTslab are antisymmetric but on the left
side of Eq.s20d this symmetry is broken by the phase factors
eiksa−bd and e−iksa−bd introduced in the off-diagonal elements
by the two vacuum slabs. As a consequence the description
as a homogeneous medium is only possible fora−b=0. In
addition to choosing a symmetric unit cell in the first place

FIG. 1. The layout of the single unit cellsad and of a finite slab
of the model periodic medium are shown. The shaded regions indi-
cate the homogeneous core of the widthd which is characterized by
the chosen appropriately model functionsmsvd and «svd, sand-
wiched by two vacuum slabs.L is the length of a single unit cell
andN the number of unit cells in the slab in propagations direction.
Periodic boundary conditions apply in the directions perpendicular
to the propagation directionz.
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we may alternatively compensate the factore−iksa−bd in the
reflection amplitudeR fwhich works simultaneously for all
lengths, see Eq.s18dg, effectively redefining the boundaries
of the system such that the slab is centered in the unit cells.
In terms of thesnormalizedd scattering amplitudesT andR,
for the single unit cell we then have the conditions

a−1s− ddeiksL−dd = T = aeff
−1s− Ld, s21d

bs− ddT = R= beffs− LdT. s22d

We already know how to invert the right side of these equa-
tions, this is just what we did in the retrieval procedure for
the HEM in the previous section. Defining renormalized
scattering amplitudesT8=Te−iksL−dd and R8=Re−iksL−dd, we
could apply the same procedure to the left side. Note that the
possibility that we can always solveT andR for «effsvd and
meffsvd guarantees a solution of Eq.s20d. In other words,
there is always an exact, length-independent description of
the periodic effective medium as a homogeneous effective
medium characterized by«effsvd and meffsvd. There is no
freedom to chose the boundaries of the homogeneous me-
dium relative to the periodic medium. As shown above, we
get the full information about the homogeneous effective me-
dium which describes a given periodic effective medium
characterized bynskd,zskd and the geometryd,L already from
the first unit cell. Inserting the renormalized transmission and
reflection amplitudess21d ands22d for a single unit cell into
the inverted scattering formulas above we obtain

cosfneffskdkLg = cossnkddcosfksL − ddg

−
1

2
Sz+

1

z
DsinsnkddsinfksL − ddg, s23d

wherenskd andzskd are the parameters of the material slab in
the middle of the unit cell of the periodic effective medium.
With the p defined in Eq.s16d andq=nskdk we can write

neffskd = ±
1

kL
arccosfpsn,z;kdg +

2p

kL
m s24d

with mPZ. The problem with the signs ofneff and zeff, as
well as with the ambiguity of Reneff is similar, and can be
resolved the same way as for the case of the homogeneous
slab discussed above. Analogously we can express the im-
pedancezeff of the effective homogeneous medium in terms
of the n andz of the homogeneous core as

zeffskd = ±Î2p+ + sz− 1/zdsinsqdd
2p+ − sz− 1/zdsinsqdd

, s25d

whereq=nskdk and

p+ = cossqddsinfksL − ddg +
1

2
Sz+

1

z
DsinsqddcosfksL − ddg.

s26d

The parameters of an effective homogeneous medium de-
scribing the periodic material from Fig. 1, which have been
obtained from the formulass24d ands25d, are shown in Fig.
2 for a concrete example of SRR-typemsvd and «svd. For
the homogeneous core in the middle of the unit cell we have
chosen

FIG. 2. sColor online.d The HEM inversionfEqs. s24d and s25dg of the analytic continuum PEM scattering amplitudesfEqs. s17d and
s18dg for model SRR-type material parametersvm=0.13, vmp=0.16 for the magnetic andve=0.4, vep=0.5 for the electric response and
g=10−4 fsee Eqs.s29d and s30dg. The homogeneous core located in the middle of the unit cell wasd=L /10 thick. The retrieved realsred,
purpled and imaginarysgreen, turquoised parts of effective parameters are shown as a function of frequencyv. The dashed lines show the real
spurpled and imaginarysturquoised parts of the anticipated homogeneous parametersfEqs. s29d and s30dg and corresponding index of
refraction and impedance. The dash-dotted black lines in Reneff indicate the upper edge of the Brillouin zone,nedge=kedge/k=mp / skLd.
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«skd = 1 + sL/ddf«Hskd − 1g, s27d

mskd = 1 + sL/ddfmHskd − 1g s28d

with model functions

mHsvd = 1 −
vmp

2 − vm
2

v2 − vm
2 + igv

s29d

and

«Hsvd = 1 −
vep

2 − ve
2

v2 − ve
2 + igv

s30d

to emulate the anticipated magnetic and electric29 resonances
of the SRR. For a LHM-type behavior we have to add the
plasmonic response of the continuous wire in the permittivity

«Hsvd = 1 −
vp

2

v2 + igv
−

vep
2 − ve

2

v2 − ve
2 + igv

. s31d

According to a simple effective medium picture, we would
expect that we can approximate a homogeneous unit cell
characterized bymHsvd and«Hsvd by concentration the mag-
netic and electric polarizations into the homogeneous core of
the periodic medium. Figure 2 shows the actual effective
impedancezeffsvd and index of refractionneffsvd obtained
via the HEM inversion of the periodic medium. Comparing
with the expected effective medium behaviorsdashed linesd
we clearly see the typical anomalies in the shape and posi-
tions of the resonances, the same qualitative behavior as ob-
served for real SRR metamaterials in the literature and our
own previous work. The effective parameters of the HEM
approximation of our periodic medium model show the
resonance-antiresonance coupling inmeffsvd and «effsvd to-
gether with the negative imaginary part Immeffsvd,0
around the magnetic resonance frequencyvm, and also a
very involved behavior close to the cut-wire resonanceve.
The effective index of refraction is cut off at the edge of the
Brillouin zone which corresponds to the appearance of addi-
tional band gaps origination from the periodicity rather than
from the underlying material properties. The qualitative be-
havior presented in Fig. 2 is generic for a wide range of
parametersvm,vmp,ve, . . ., of theresonances andL,d of the
geometry. If the periodic medium model is used with only
the electric resonance or with an additional plasmonic term
in «svd, it qualitatively reproduces the observed deviations
from the expected plain effective medium behavior pub-
lished for the array of cut wires and the LHM, respectively.

Although the curves show most of the discussed abnor-
malities in the HEM description of the SRR, the analytic
description matches the simulation and inversion results for
the real metamaterial present in literature not in all aspects.
Clearly, there are problems very close to the resonance fre-
quencies. Instead of the divergence in the effective index of
refractionneff being virtually cut off at the upper edge of the
first Brillouin zone as observed in the simulations of the
actual SRR metamaterial, the analytic description produces a
series of consecutive band gaps at the boundaries of the first
and higher Brillouin zones and a lot of structure in the imagi-
nary part ofneff. The same holds for the analytic description

applied to the periodic effective medium model of the LHM
snot shownd. Here, we particularly miss the cutoff at the
bottom of the negativeneff region. In either case the under-
lying lattice in the simulation starts to become visible. Since
the lattice has a finite lattice constant it cannot support arbi-
trarily large momenta, such that we expect additional effects
if the continuum momentumq reaches the order ofp /alattice.
In order to understand also the details of the retrieved HEM
parameters in our simulation of real SRR and LHM metama-
terials we have to take the discretization lattice of the em-
ployed TMM into consideration. To see the modification of
the continuum results by the discretization lattice we have to
derive the scattering formulas for the periodic medium
model on the lattice.

B. Lattice formulation

We follow the TMM introduced for the Maxwell equa-
tions by Pendry31–34 in the formulation described by Markoš
and Soukoulis.12 The electric and magnetic field, together
with the spatially dependent material relative constants
mrelsr d and «relsr d which define the metamaterial, are dis-
cretized on the bonds of mutually dual latticeshmj andhm̃j.
With the renormalized material constants«ismd= iv«0«relsm
+ei /2d and mismd= ivm0mrelsm̃− ẽi /2d, used throughout this
section, we can write the transfer matrix equations for a
stratification in thez direction for the two independent
componentsi P hx,yj of the electromagnetic field. Using
squasidperiodic boundary conditions in the'z plane we can
introduce a Fourier representation of the fields with respect
to this plane defining an in-plane momentumq. To derive a
scattering formula corresponding to the continuum case con-
sidered in the previous section we restrict ourself to the most
simple case of normal incidence, i.e., zero in-plane momen-
tum q=0. Then the transfer matrix for normal incidence
takes the form

SE

H
D

mz+1
= S 1 Asmzd

Bsmz + 1d 1 + Bsmz + 1dAsmzd
DSE

H
D

mz

.

s32d

The generallyq-dependent matricesA and B reduce to a
simple off-diagonal form, with the productBsmz+1dAsmzd
diagonal,

Asmzd = S 0 mysmzd
− mxsmzd 0

D , s33d

Bsmzd = S 0 − «ysmzd
«xsmzd 0

D , s34d

such that the transfer matrixs32d factorizes, reordering the
electromagnetic field vector in the formsEx,Hy,Ey,−HxdT,
into a twofold degenerated block-diagonal structure
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SEx Ey

Hy − Hx
D

mz+1
= S 1 mysmzd

«xsmz + 1d 1 + «xsmz + 1dmysmzd
D

3SEx Ey

Hy − Hx
D

mz

. s35d

Without loss of generality we can restrict ourself to consider
just the first polarization. We denote the single-polarization
transfer matrix for theq=0 modes in the last equationTsmzd.
It is expedient to introduce the decomposition

Tsmzd = t«smz + 1dtmsmzd s36d

=S 1 0

«smz + 1d 1
DS1 msmzd

0 1
D . s37d

Further we can factorize thet into a vacuum and a material
contribution,t«=ts«−«vacd

t«vac
=t«vac

ts«−«vacd
related to the po-

larization for the magnetic and analog for the electric field
step. Note the renormalized vacuum permittivity«vac= iv«0
and permeabilitymvac= ivm0. As expected,Tsmzd is unimo-
dular. Now we can easily find the eigensystem; the eigensys-
tem of the vacuum transfer matrix defines the plain wave
basis on the lattice which we use to define the scattering
formalism. Because of the unimodularity the two eigenval-
uesl=e±ik are mutually reciprocal and for the propagating
modes we are interested in on the unit circle, i.e.,k is real.
We get the characteristic polynomiall2−lf2+«xsmz

+1dmysmzdg+1, hence cosk=1+«xsmz+1dmysmzd /2. The two
signs ofk correspond to the right- and left-moving waves.
Note that« and m implicitly contain thev dependence. To
obtain the scattering matrix on the lattice we need the wave
representation of the total transfer matrix of a unit cell. The
right and left eigenvectors ofTsmzd are distinct, Rlsmzd
=f1,sl−1d /mysmzdgT and Llsmzd=f1,sl−1d /«xsmz+1dg*T/
sl+1d* , and satisfy the orthogonality relation
Lli

+ smzdRl j
smzd=di j . Note that we applied the common nor-

malization to the left eigenvectors in order to normalize the
electric field component of all right eigenvectors to 1. This is
required for a clean definition of the scattering amplitudes
analog to the continuum case. Further, the two right and the
two left eigenvectors are linearly independent, respectively.
Therefore we may group the two right and the two left eigen-
vectors of the vacuum transfer matrix into the matrices

L 0
+ =1

1

eik + 1
0

0
1

e−ik + 1
211

eik − 1

iv«0

1
e−ik − 1

iv«0

2 , s38d

R0 = 1 1 1

eik − 1

ivm0

e−ik − 1

ivm0
2 , s39d

where the eigenvaluesl=e±ik satisfy the vacuum dispersion
relation 2−2 cosk+mvac«vac=2−2 cosk−v2m0«0=0 for the
vacuum wave vectork, and use the projectorR0L 0

+ to obtain

the wave representation of the total transfer matrixT tot of the
finite system as

T totskd = L 0
+skdT totR0skd. s40d

Then we get the usual definition of the scattering amplitudes
from the correspondence between the scattering and the
transfer matrix given by Eq.s5d.

The homogeneous slab. Now we have to consider the total
transfer matrix of our meta-materials. The most simple case
is just a homogeneous slab of finite length. On the lattice, the
composition of the total transfer matrix depends on the ma-
terial discretization. We compute the total transfer matrix by
starting from a right eigenvector of the vacuum base at the
last vacuum sitemz=0 just before one side of the sample and
apply successively the single-step transfer matricesTsmzd
until we reach the first sitemz=n+1 right of the sample for
which theTsmzd is a vacuum step again. We haven material
layers inside the sample butn+1 transfer matrix step which
depend on the material parametersmy,«x of the sample. Since
we only have to consider a single polarization, we drop in
the following they,x indices inm and« in order to improve
readability. Because in the discretized Maxwell equations the
electric and magnetic fields live on mutual dual lattices, we
distinguish three different single stepTsmzd inside the sample
instead of only one, as one would expect for a homogeneous
slab. Tsmzd depends onmsmzd and «smz+1d. Therefore the
first stepTs0d inside the sample sees only the electric re-
sponse«s1d but no magnetic response of the material. The
subsequent steps see both,« andm, and are constant across
the bulk of the sample. The last step back into the vacuum
behind the slab is special again. Both steps across the bound-
aries of the sample depend on the chosen material discreti-
zation. Here we adopt a symmetric material discretization36

which respects thez isotropy such that the steps into and out
of the sample become equal. Then we may calculate the
wave representation as

Ttotskd = L 0
+t«̄−«ft«tmgnt«̄−«vac

t«vac
tmvac

R0

= L 0
+t«̄−«vac

−1 RfL +t«tmRgnL +t«̄−«vac
TvacR0

= fL +t«̄−«vac
R0g−1fL +t«tmRgnfL +t«̄−«vac

R0gTvacskd,

s41d

wherehL0
+,R0j is the eigenbase of the vacuum transfer matrix

step Tvacuum with the eigenvaluesl0=e±ik as before, but
hL+,Rj now denotes the eigenbase of the transfer matrix step
t«tm inside the homogeneous medium with the eigenvalues
l=e±iq. We made use of the aforementioned identityt«a

t«b
=t«a+«b

. The symmetric material discretization introduces the
averaged«̄=s«+«vacd /2 at the material’s surface. As shown
above, the wave vector in the vacuumk and inside the ho-
mogeneous slabq satisfy the dispersion relations 2−2 cosk
+mvac«vac=0 and 2−2 cosq+m«=0. Since the matrix
L +t«tmR in Eq. s41d is diagonal, we basically have to calcu-
late the matrixL +t«̄−«vac

R0. After some algebra we obtain for
the homogeneous slab

IMPACT OF INHERENT PERIODIC STRUCTURE ON… PHYSICAL REVIEW B 71, 245105s2005d

245105-7



Ttotskd = Tcoresk,ndTvacuumskd

with the diagonalTvacuumskd and

Tcoresk,nd

=
1

z1 lnGsld −
1

lnGS1

l
D Sln −

1

lnDf2 − Gs1dg

− Sln −
1

lnDf2 − Gs1dg − lnGS1

l
D +

1

lnGsld 2 ,

s42d

where

Gsld = laskd +
as− kd

l
− m«askdas− kd, s43d

askd =
« − «vac

2«
+

l0skd − 1

«mvac
, s44d

z =
sl − l−1dsl0 − l0

−1d
«mvac

, s45d

with askd+as−kd=1 and consequently Gs1d=1
−m«askdas−kd. Further we haveaskd−as−kd=z / sl−l−1d
and Gsld=Gsl−1d+z. Note the antisymmetry of the off-
diagonal elements. Using again the definition of the scatter-
ing matrix s5d, we find the transmission and reflection am-
plitudes as

t−sv,nd =
zl0

l−nGsld − lnGsl−1d
,

r+sv,nd = szl0d−1sln − l−ndf2 − Gs1dgt−sv,nd. s46d

The nonvacuum factor of the lattice transfer matrixs42d ap-
pears to have the same symmetries as the transfer matrix of
the homogeneous slab in the continuum: the off-diagonal
terms are antisymmetric, the diagonal terms are mutual com-
plex conjugates if«rel andmrel are real.

The periodic medium. Knowing the transfer matrix of the
finite slab it is now easy to obtain the transfer matrix for a
sample of multiple unit cells of the homogeneous as well as
the periodic medium with the unit cell corresponding to Fig.
1sad. We can reduce the wave representation of the total
transfer matrix to a product involving the wave representa-
tion of the homogeneous core we already know and some
additional vacuum transfer matrix stepsT0 for the free space
in the unit cell. We assume the measuresa, b, andd in Fig.
1 to correspond tona, nb, andnd layers on the lattice. Then
we get for the total transfer matrix ofN unit cells of the
periodic medium usingt«a+«b

=t«a
t«b

and, consequently,
t«̄−«t«̄−«vac

=1

Tpm,Nskd = L 0
+fst«vac

tmvac
dnbft«̄tmst«tmdnd−1t«̄tmvac

g

3st«vac
tmvac

dna−1gNt«vac
tmvac

R0

= fTvac
nbskdTcoresk,nddTvac

naskdgNTvacskd s47d

with theTcoresk,ndd defined in Eq.s42d. Since the phase fac-

tors l0
−snb−nad andl0

nb−na introduced by the two vacuum slabs
in the bracket on the last line of Eq.s47d do explicitly break
the antisymmetry of the off-diagonal elements that is present
for the single homogeneous slab in the continuum and, in the
symmetric material discretization, also on the lattice, we can
obtain a representation of the periodic medium by a homo-
geneous medium only for the casenb=na. As already ex-
plained for the continuum case this is not a real restriction
but instead just fixes the definition of the effective bound-
aries of the periodic medium. In the numeric simulation we
have to explicitly compensate the corresponding vacuum
phases in the scattering amplitudes. We can use the Cheby-
shev formula to explicitly calculate theNth power such
that we get the transmission and reflection amplitudes for
the periodic medium afterN unit cells in propagation
direction as

t−sv,Nd = l0Sl−ndGsld − lndGsl−1d
zl0

nb+na
UN−1 − UN−2D−1

,

s48d

r+sv,Nd =
slnd − l−nddf2 − Gs1dgUN−1t−sv,Nd

zl0
na−nbl0

, s49d

where the argument of the Chebyshev polynomialsUNspd is
given by

p = cossqnddcosfksna + nbdg

−
Gsld + Gsl−1d

z
sinsqnddsinfksna + nbdg. s50d

As for the continuum formulation, we actually get all the
information about the metamaterial from the single unit cell.
Comparing the scattering amplitudess48d and s49d on the
lattice with the normalized scattering amplitudes for homo-
geneous slab in the continuum tells us how to do the phase
compensation for the lattice-TMM resultsT=l0

−1t− and
R=l0

−snb−nadr+. The condition forT arises from the additional
vacuum stepT0 into the slab on the lattice, the compensation
in R results from the symmetric definition of the boundary of
the unit cell which is required to describe the periodic by a
homogeneous medium as explained above.

Continuum HEM inversion. Again we ask whether the
model periodic medium from Fig. 1 can be represented by an
effective homogeneous medium. Here we have two choices:
sid we can compare the scattering amplitudes of the lattice
periodic medium with the scattering formulass21d and s22d
derived for the homogeneous slab in the continuum or we
can sii d compare with the lattice scattering formulae for the
homogeneous slab derived in this section. Moreover, we
have to decide which material discretization to use. In this
paper we will concentrate on comparing the lattice scattering
results to the continuum scattering formulas for the homoge-
neous slab, as we previously did with the standard inversion
procedure to obtain effective«effsvd and meffsvd from the
metamaterial simulations.

Analytically, the effective material parameters obtained
from the HEM inversion for the lattice formulation of the
model periodic media used in the last section to emulate the

KOSCHNY et al. PHYSICAL REVIEW B 71, 245105s2005d

245105-8



SRR and LHM metamaterials are shown in Figs. 3 and 4,
respectively. As expected, the qualitative behavior is very
similar to that found with the continuum formulation. All the
problematic effects seen in the previously published simula-
tions, such as resonance-antiresonance coupling, negative

imaginary parts, deformed resonances, bad gaps, and so on,
are present. The major difference to the continuum formula-
tion becomes visible around the resonances. Where we pre-
viously found a series of tiny periodicity band gap around
the resonances, in the lattice formulation we obtain a much

FIG. 4. sColor online.d The HEM inversionfEqs.s10d and s11dg of the analytic lattice PEM scattering amplitudesfEq. s46dg for model
LHM-type material parametersvm=0.13, vmp=0.16 for the magnetic, andve=0.4, vep=0.5, vp=0.27 for the electric response, and
g=10−4 fsee Eqs.s29d and s31dg. The homogeneous core located in the middle of the unit cell wasd=L /10 thick. The retrieved realsred,
purpled and imaginarysgreen, turquoised parts of effective parameters are shown as a function of frequencyv. The dashed lines show the real
spurpled and imaginarysturquoised parts of the anticipated homogeneous parametersfEqs. s29d and s31dg and corresponding index of
refraction and impedance. The dash-dotted black lines in Reneff indicate the edges of the Brillouin zone,nedge=kedge/k=mp / skLd.

FIG. 3. sColor online.d The HEM inversionfEqs.s10d and s11dg of the analytic lattice PEM scattering amplitudesfEq. s46dg for model
SRR-type material parametersvm=0.13,vmp=0.16 for the magnetic, andve=0.4,vep=0.5 for the electric response andg=10−4 fsee Eqs.
s29d ands30dg. The homogeneous core located in the middle of the unit cell wasd=L /10 thick. The retrieved realsred, purpled and imaginary
sgreen, turquoised parts of effective parameters are shown as a function of frequencyv. Note the reduction of the multiple band gaps seen
in Fig. 2 around the resonances to a single gap before each resonance. The dashed lines show the realspurpled and imaginarysturquoised
parts of the anticipated homogeneous parametersfEqs.s29d ands30dg and corresponding index of refraction and impedance. The dash-dotted
black lines in Reneff indicates the upper edge of the Brillouin zonenedge=kedge/k=mp / skLd.
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simpler structure with basically one gap before each reso-
nance. This is in excellent agreement with the numerical
simulations, hence, expectedly, the lattice formulation com-
pares much better to numerical simulations also obtained via
discretization of the Maxwell equations than the continuum
formulation. The discussion of further details we shall defer
to a dedicated section below.

IV. SIMULATION RESULTS

In this section we now present actual TMM simulation
results for real SRR and off-plane LHM metamaterialsssee
Table Id. All numerical simulation are done using an imple-
mentation of the TMM method described by Markoš and
Soukoulis.12 The metamaterials are uniformly discretized on
a cubic lattice using a symmetric material discretization. The
dimensions of the unit cell are 6310310 mesh steps, the
single-ring SRR is a square ring of 737 mesh steps with a
gap in the top side one mesh step wide. Propagation is for all
cases along the SRR plane with the polarization of the inci-
dent plain wave such that the electric field is parallel to the
two continuous sides of the SRR. Therefore we have only
magnetic coupling to the magnetic resonance of the SRR.5,35

Periodic boundary conditions apply to both directions per-
pendicular to the direction of propagation. For the off-plane
LHM we add a one mesh-step thick continuous wire in front
of the SRR such that the position of the wire is symmetric in
the middle between two periodic repetitions of the SRR
plane and centered with respect to the gap in the SRR. The
direction of the wire is parallel to the continuous sides of the
SRR, thus parallel to the incident electric field. All compo-
nents of the metamaterials, the ring of the SRR and the con-
tinuous wire, are made from metal characterized by a con-
stant relative permittivity of«metal=s−3.0+5.88id105 and
mmetal=1. Note that the results do not depend much on«metal
as long as it does not fall below a certain threshold.12 The

chosen value is reasonable to emulate metals such as Cu, Ag,
Au in the range of GHz to a few THz. The rest of the unit
cell is vacuum, there are no dielectric boards. The special
geometry of the unit cell has been carefully chosen to pre-
serve the inversion symmetry of the unit cell in the two
directions perpendicular to the direction of propagation. This
allows us to consider the scattering for only one polarization
as it avoids complications by cross-polarization terms in the
scattering amplitudes.36 In this paper, we concentrate our
consideration on the region around the magnetic resonance
frequencyvm, where we expectmeffsvd to become transition-
ally negative, for two reasons: first this is the region of in-
terest for any left-handed application, and second, this is the
frequency window for which simulation data is typically
shown in the literature. A more detailed investigation of the
higher frequency region, particularly the vicinity of the elec-
tric cut-wire response of the SRR and the intermediate peri-
odicity band gaps will be published elsewhere.

In the following we show HEM inversion results for the
scattering data numerically obtained for the metamaterial
with the TMM. After the correct vacuum-phase compensa-
tion described above the inverted HEM scattering formulas
s10d and s11d are applied to the simulatedT and R for
metamaterial slabs with a thickness of one, two, and three
unit cell in propagation direction. We shall denote the
results asnHEMsvd and zHEMsvd or mHEM=nHEMzHEM and
«HEM=nHEM/zHEM, correspondingly. This approach is the
same as chosen in the literature. Then we find the PEM ap-
proximation for the simulated metamaterial using the lattice
formulation for the analytic scattering formula of a model
periodic medium consisting of a homogeneous core which is
a single discretization mesh-step thick and located the unit
cell in the plain of the SRR gaps and the LHM continuous
wire. This constitutes the lattice equivalent of a single scat-
tering plain in the continuum. A model periodic medium,
characterized by effective material constantsmsvd and«svd
of the homogeneous core, which reproduces the simulatedT
andR independent on the system length is called a periodic
effective medium. The numeric inversion of the lattice scat-
tering formulass48d and s49d is applied to the simulatedT
andR for the first unit cell of each metamaterial, providing
us with effective material constantsmcoresvd and«coresvd for
the homogeneous core of the PEM approximation. From the
core parameters we can derive two further sets of effective
parameters. First, we calculate the HEM inversion of the
PEM scattering data obtained from the retrievedmcoresvd and
«coresvd and compare the results with the HEM inversion of
the direct simulation data to assess the quality of the PEM
approximation. We denote this as HEMsPEMd. Second, we
introduce the material parametersmPEMsvd and«PEMsvd of a
homogeneous unit cell that would correspond to the PEM
approximation in the effective medium limit, equating the
total electric and magnetic polarizations of the respective
unit cells

mPEMsvd = 1 +
nd

na + nd + nb
fmcoresvd − 1g s51d

and

TABLE I. Summary of the effective medium related
acronyms.

HEM Homogeneous effective medium, a homogeneous
medium characterized bymsvd and«svd which,
substituted for a finite metamaterial slab, length-
independently reproducessor approximatesd the
given scattering amplitudes.Here always used in
continuum formulation. Finding a HEM for given
T,Ris called HEM inversionsif exactd or HEM
approximation.

PEM Periodic effective medium, a most simple periodic
model-medium defined bymcoresvd,«coresvd and
a geometry shown in Fig. 1 which length-
independently reproducessor approximatesd given
scattering amplitudes. Also used a priori with
given mcoresvd,«coresvd to demonstrate effects of
the periodicity. Here used in lattice formulation.

HEMsPEMd The HEM which reproduces the scattering
amplitudes calculated analytically from a given
PEM.
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«PEMsvd = 1 +
nd

na + nd + nb
f«coresvd − 1g. s52d

The idea of this definition is to obtain parameters which we
can compare with those of the HEM inversion, becoming
equivalent with the latter if we can truly neglect the period-
icity of the material. This allows us, to some degree, to con-
sider the metamaterial’s electromagnetic response as being
composed of an actual contribution of the internal geometry
of the metamaterials constituents and an explicit contribution
of the periodic arrangement.

A. SRR

From the naive effective medium picture we expect the
SRR to expose at the magnetic resonance brought about by
the LC-oscillator-type response of the split ring to a perpen-
dicular external magnetic field a Lorentz-type resonant form4

in the permeability meffsvd but an unaffected, weakly
frequency-dependent permittivity«effsvd. If the magnetic
resonance is strong enough, i.e., the imaginary part inm is
small, we should find an isolated region where Remeffsvd
,0. The HEM approximation of the actual simulation data is
shown as effective impedancezHEMsvd and index of refrac-
tion nHEMsvd in Fig. 5 as the colored points. The different
colorssorange, yellow, greend correspond to different lengths
of the metamaterial of one, two, and three unit cells in propa-
gation direction. We see the typical behavior aroundvm we
are already familiar with from previous work.23 Instead of
the expected form, we obtain a sharp cutoff in RenHEMsvd
on the low-frequency side, accompanied by a nonzero
Im nHEMsvd. The adjacent region with RenHEM<0 and sig-
nificant ImnHEM.0 should correspond to the negativem
produced by the magnetic resonance. Even more disturbing
is the fact that the peaks inzHEMsvd which should coincide
with the peaks innHEMsvd directly at the resonance fre-
quencyvm do appear at substantially lower frequency. This
behavior makes it hard to determinevm for the metamaterial

since the retrievednHEMsvd and zHEMsvd mutually disagree
upon the value. We show that the HEM approximation of the
metamaterial is, apart from some additional noise for longer
systems, indeed length independent. Although we only show
data for the first three unit cells we confirmed the length
independence for all system lengths up to 11 unit cells. The
dash-dotted line in Fig. 5sad indicates the upper edge of
the first Brillouin zone,nedge=kedge/k=p / skLd, where L is
the length of the unit cell in propagation direction. Clearly
the cutoff of RenHEMsvd coincides with this line. Note also
that the peaks inzHEMsvd appear exactly when RenHEMsvd
reachesnedgesvd. This behavior is generic, qualitatively the
same is observed for different sizes of the unit cell and dif-
ferent geometries of the SRR, including single-ring and
double-ring SRRs as well as more symmetric multigap
SRRs.22 The corresponding effective permittivity and perme-
ability of the HEM approximation are shown in Fig. 6.
Again, the colored points represent the simulation data
for one to three unit cells. The most striking deviation from
the expected effective medium behavior is the resonance-
antiresonance coupling between RemHEMsvd and
Re«HEMsvd, accompanied by a significant negative imagi-
nary part of the permittivity, Im«HEMsvd,0. Moreover, the
negative region of them resonance is strongly but character-
istically deformed and not ascending monotonically from a
negative divergency. Of course, the divergencies of the ef-
fective parameters would be blurred in the presence of large
imaginary parts inm or «, but at least for our simulations
using almost perfect metals in vacuum we would expect rea-
sonably sharp divergencies. As a consequence of the length
independence ofnHEM and zHEM also the retrieved
RemHEMsvd and Re«HEMsvd are basically length indepen-
dent.

In the analytic sections above we demonstrated that the
periodicity can produce all that kind of effects violating the
effective medium picture in our simulations. Now we show
that the PEM approximation of the simulation data yields
reasonable effective parameters free of the above artifacts.

FIG. 5. sColor online.d For the
simulated SRR metamaterial the
effective index of refraction
neffsvd and impedancezeffsvd are
shown. The colored curves repre-
sent the HEM approximation
fEqs.s10d ands11dg of the simula-
tion data for the first three unit
cells, the solid black line the
HEMsPEMd approximation, and
the dashed line the PEM approxi-
mation fsee Eqs.s51d and s52dg
obtained from the first unit cell
data. Note the different positions
of the resonance forneffsvd and
zeffsvd.
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The dashed curves in Figs. 5 and 6 represent the effective
parametersmPEMsvd and «PEMsvd, with the corresponding
nPEMsvd and zPEMsvd, extracted from the PEM approxima-
tion of the simulation data as described above. For the PEM
unit cell we chosena=5, nd=1, andnb=4 to fit the symmetry
of the metamaterials unit cell that embeds the 13737 SRR
into a 6310310 unit cell. From the correspondingmcoresvd
and «coresvd we can in turn calculate the scattering ampli-
tudes of the PEM and subject those to the HEM inversion.
The resulting HEMsPEMd parameters are shown as the solid
black lines which virtually coincide with the first unit cells
simulated HEM parameters, hence basically also with those
of the longer systems, proving that the PEM approximation
is reliable. Obviously the PEM parameters behave exactly as
we expected from the effective medium picture in the first
place. There is a clean resonance innPEMsvd and the peaks of
nPEMsvd andzPEMsvd now appear at the same frequency, ren-
deringvm well defined. There is no resonance-antiresonance
coupling betweenmPEMsvd and «PEMsvd anymore. The per-
mittivity is roughly constant acrossvm and does not show
any negative imaginary part. The permeabilitymPEMsvd ex-
poses a clear, antisymmetric resonance atvm in its real part
in conjunction with a symmetric absorption peak in the
imaginary part at the same frequency. Note further that the
frequencyvmp where RemHEMsvd get back to positive val-
ues after the magnetic resonance is substantially smaller than
the corresponding frequency for RemPEMsvd. The procedure
yields analogue results for different SRR geometries and dif-
ferent size of the unit cellsnot shownd.

Effective medium behavior was expected in the first place
because the vacuum wavelength of the incident radiation at
the magnetic resonance frequencyvm is large compared to
the size of the unit cell for the customary LH and related
metamaterials. In most experiments and simulations this ra-
tio is in the range of ten to five.5–7,10,13,22,23,28,37–39In the SRR
metamaterial presented above we went intensionally to the
lower extreme to make the effects of the periodicity more
pronounced and more easy to identify. In Figs. 7 and 8 we
present the analog HEM and PEM approximation results for

a SRR with five times lowervm. The size of the SRR and the
unit cell are kept constant. To lower the resonance frequency
of a SRR without changing the size one would usually de-
crease the width of the gap in the SRR increasing its capaci-
tance. Due to the limitations of the used TMM implementa-
tion suniform discretizationd this was not feasible. Therefore
we adopted the alternative possibility to place some high
dielectric constant material inside the SRR gap, which serves
the same purpose and can be used to emulate a narrower gap.
For this low-frequency SRR the wavelength to unit cell size
ratio aroundvm is roughly 25, higher than in any published
LHM. The behavior of the retrieved effectivenHEMsvd and
zHEMsvd in Fig. 7 is now qualitatively as expected from the
effective medium picture, the refractive index and impedance
of the HEM approximation virtually coincide with the PEM
parametersnPEMsvd andzPEMsvd. As the magnetic resonance
is now shifted far below the edge of the Brillouin zone there
is no visible cutoff in RenHEMsvd and the resonance peaks in
n andz appear at the same frequencyvm. Note thatmHEMsvd
reaches unity away fromvm to either side. Also the effective
permeabilities of HEM and PEM in Fig. 8 do coincide, ex-
posing a clean antisymmetric resonance in Rem and a sym-
metric positive absorption peak in Imm. Surprisingly, though
weak there is still a noticeable residue of the resonance-
antiresonance coupling left in Re«HEMsvd together with the
corresponding negative imaginary part. Only here the HEM
approximation deviates from the PEM approximation which
expectedly does not show these effects. All effective param-
eters are almost perfectly length independent. This has been
verified for up to 10 unit cells in propagation directionsnot
shownd. Note also the absence of the additional noise ob-
served in the effective parameters for longer systems. These
results show that the artifacts in the HEM approximation
which we identified as effects of the metamaterial’s period-
icity vanish if we approach the effective medium limit. At
low frequencies HEM and PEM approximation converge,
however, even in this extreme low-frequency limit remains
of the periodicity artifacts are still visible. Since for virtually
all the metamaterials measured or simulated that have been

FIG. 6. sColor online.d For the
simulated SRR metamaterial the
effective permittivity «effsvd and
permeability meffsvd are shown.
The colored curves represent the
HEM approximation fsee Eqs.
s10d and s11dg of the simulation
data for the first three unit cells,
the solid black line the
HEMsPEMd approximation, and
the dashed line the PEM approxi-
mation fEqs. s51d and s52dg ob-
tained from the first unit cell data.
Note the antiresonant behavior of
the permittivity and the misshapen
magnetic resonance in the fre-
quency interval where neffsvd
reaches the edge of the Brillouin
zone.
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published the wavelength to unit cell size ratio is worse than
25, we expect the metamaterial’s periodicity required to be
taken into account.

B. LHM

The most simple way to obtain a left-handed material is to
add an appropriately dimensioned29,40continuous wire to the
SRR considered above. From the naive effective medium
picture we expect for the LHM a Lorentz-type resonance in
m in combination with a plasmonic form, modified by the
electric cut-wire response of the SRR where necessary,29

which is essentially negative around the magnetic resonance
frequencyvm. The effective impedance and index of refrac-
tion of the HEM approximation for the first three unit cells of

the LHM in propagation direction is shown in Fig. 9 as the
colored points. In violation of the assumed effective medium
picture we find again a cutoff of the negative resonant
RenHEMsvd this time at the lower edge of the first Brillouin
zonenedge=−kedge/k=−p / skLd, whereL is the length of the
unit cell in propagation direction. The imaginary part ofn
does not have the expected form either. InzHEMsvd we ex-
pect two peaks for the LHM, one atvm and another one at
the electric seffectived plasma frequencyvp8 which is the
lowest frequency where«svd becomes positive. Though the
retrievedzHEMsvd does show two such peaks, the position of
the first one associated withvm does not agree with thevm
derived fromnHEMsvd. This is the same issue as found for
the SRR above. The corresponding effective permeability
mHEMsvd and permittivity«HEMsvd are shown in Fig. 10. The

FIG. 7. sColor online.d For the
simulated low-frequency SRR
metamaterial the effective index
of refraction neffsvd and imped-
ancezeffsvd are shown. The col-
ored curves represent the HEM
approximation fEqs. s10d and
s11dg of the simulation data for the
first three unit cells, the solid
black line the HEMsPEMd ap-
proximation, and the dashed line
the PEM approximationfsee. Eqs.
s51d and s52dg obtained from the
first unit cell data. Note that far
away from the edge of the Bril-
louin zone HEM and PEM ap-
proximation, and the expected ho-
mogeneous medium behavior
coincide.

FIG. 8. sColor online.d For the
simulated low-frequency SRR
metamaterial the effective permit-
tivity «effsvd and permeability
meffsvd are shown. The colored
curves represent the HEM ap-
proximation fsee. Eqs.s10d and
s11dg of the simulation data for the
first three unit cells, the solid
black line the HEMsPEMd ap-
proximation, and the dashed line
the PEM approximationfEqs.s51d
and s52dg obtained from the first
unit cell data. In the low-
frequency limit the resonance/
antiresonance coupling as well as
the negative imaginary parts
disappear.
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previously published resonance-antiresonance coupling in
the real parts aroundvm is clearly visible, together with the
appearance of the negative imaginary part in the permittivity
and the misshapen absorption peak in the permeability. Also
for the LHM we can now confirm the length independence of
the HEM approximation, apart from some additional noise,
up to 10 unit cells in propagation direction. As for the SRR
the PEM approximation of the LHM yields effective param-
eters free of all the artifacts seen in the HEM parameter
which demonstrates again their origin in the periodic struc-
ture of the metamaterial. InnPEMsvd andzPEMsvd we obtain
an untruncated magnetic resonance and agreement ofn andz
upon the position ofvm. The permittivity«PEMsvd and per-
meability mPEMsvd show a clean magnetic resonance with a
symmetric absorption peak and the anticipated electric plas-
monic behavior without any negative imaginary parts. In
«PEMsvd we can even recognize the beginning ascent of the
imaginary part to the absorption peak atv=0 contributed by

the plasma resonance of the continuous wire. Note again the
shift in vmp while the electric plasma frequencyvp8 is essen-
tially the same for HEM and PEM approximation, although
the descent to negative values for decreasing frequency is
more rapid for«PEMsvd. Also for the LHM these results are
generic, i.e., have been qualitatively reproduced for different
sizes of the SRR and continuous wire components of the
LHM and the unit cell.

C. Continuous wire and cut wire

Not only the behavior of the SRR based metamaterials
around the magnetic resonance but also that of the periodic
arrangement of continuous wires or cutwires are strongly af-
fected by the periodicity. In the effective medium picture, the
continuous wire is expected to expose a simple plasmonic
permittivity going monotonously from negative to positive
real part and crossing zero at a single plasma frequencyvp.

FIG. 9. sColor online.d For the
simulated off-plane LHM
metamaterial the effective index
of refraction neffsvd and imped-
ancezeffsvd are shown. The col-
ored curves represent the HEM
approximation fEqs. s10d and
s11dg of the simulation data for the
first three unit cells, the solid
black line the HEMsPEMd ap-
proximation, and the dashed line
the PEM approximationfsee. Eqs.
s51d and s52dg obtained from the
first unit cell data.

FIG. 10. sColor online.d For
the simulated off-plane LHM
metamaterial the effective permit-
tivity «effsvd and permeability
meffsvd are shown. The colored
curves represent the HEM ap-
proximation fsee. Eqs.s10d and
s11dg of the simulation data for the
first three unit cells, the solid
black line the HEMsPEMd ap-
proximation, and the dashed line
the PEM approximationfEqs.s51d
and s52dg obtained from the first
unit cell data.
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In the HEM approximation of simulated continuous wire
metamaterials,2 e.g., the isolated continuous wire array from
the LHM discussed above, we observe the anticipated plas-
monic behavior only at low frequencies up to the order of the
plasma frequencyvp of the wire. At higher frequency we
find a sequence of additional stop bands which can be ex-
plained as periodicity band gaps in the framework of the
PEM model: whenever the residue class Rensvdmod 2p /k
comes close to the edge of the first Brillouin zone a period-
icity band gap is opened where a representative of
RenHEMsvd follows the linenedgesvd and ImnHEMsvd is sig-
nificantly nonzero. At the boundaries of each of these band
gaps the real and the imaginary part of the effective imped-
ancezHEMsvd have either a zero or a pole which leads to the
appearance of an alternating sequence of phony resonance-
like structures inmHEMsvd and«HEMsvd. The corresponding
series of transmission above the “first”vp have also been
confirmed in experiments41 with thin metallic wires on PCB

boards. Using the PEM approximation of the simulation data
we can describe the scattering amplitudes in terms of a
«PEMsvd which does possess just the expected plasmonic
form in conjunction with an almost exactlymPEMsvd=1. The
plasma frequency in«HEMsvd, however, does not coincide
with the “lowest”vp of the HEM approximation but appears
moderately shifted to higher frequency. The HEM and PEM
approximation for a metamaterial comprising a periodic ar-
ray of continuous thin wires parallel to the electric field of
the incident electromagnetic wave is shown in Figs. 11 and
12. Both effective material approximations are virtually in-
dependent on the system length.

The periodic array of cut wires is of interest for two rea-
sons: first, it can be used as a model of the electric response
of the SRR and second, we could substitute the continuous
wire in the LHM to tailor the collective«effsvd or to simplify
its mechanical construction. For a sufficiently low resonance
frequencyve the cut wire shows a behavior analogous to the

FIG. 11. sColor online.d For
the simulated continuous wire
metamaterial the effective index
of refraction neffsvd and imped-
ancezeffsvd are shown. The col-
ored curves represent the HEM
approximation fEqs. s10d and
s11dg of the simulation data for the
first three unit cells, the solid
black line the HEMsPEMd ap-
proximation, and the dashed line
the PEM approximationfsee Eqs.
s51d and s52dg obtained from the
first unit cell data.

FIG. 12. sColor online.d For
the simulated continuous wire
metamaterial the effective permit-
tivity «effsvd and permeability
meffsvd are shown. The colored
curves represent the HEM ap-
proximation fsee Eqs.s10d and
s11dg of the simulation data for the
first three unit cells, the solid
black line the HEMsPEMd ap-
proximation, and the dashed line
the PEM approximationfEqs.s51d
and s52dg obtained from the first
unit cell data.
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SRR but with the electric and magnetic parameters ex-
changed. We observe23 all the previously described artifacts
in the HEM approximation: the resonance-antiresonance
coupling, where theselectricd resonance appears this time in
«HEMsvd, accompanied by a negative imaginary part in
mHEMsvd, the cutoff ofnHEMsvd at the Brillouin zone edge,
and so on. However, since in real metamaterials the cut-wire
resonance usually appears at much higher frequency, we ob-
serve an additional periodicity band gap at lower frequency,
well separated from the cut-wire response, qualitatively as
shown in Fig. 3. The effective parametersmHEMsvd and
«HEMsvd at the lower boundary of this additional band gap
will appear very similar to those of a cut-wire resonance at
low frequencyve. Note that we can shift the cut-wire reso-
nance to arbitrarily low frequency by reducing the gap in the
longitudinal direction of the cut-wires, i.e., making the finite
wires almost as long as the width of the unit cell. The HEM
and PEM approximation for such a metamaterial of cut wires

parallel to the electric field of the incident electromagnetic
wave is shown in Figs. 13 and 14. In either case, the effec-
tive parameters obtained from the PEM approximation basi-
cally do not show any artifacts around the cut-wire resonance
nor the periodicity band gaps and behave very much as ex-
pected from the naive effective medium picture. This gives
us a criterion to distinguish the real cut-wire resonance in a
metamaterial from the possible phony one brought about by
the periodicity.

V. DISCUSSION

When Veselago conceived the idea of heft-handed electro-
magnetic material he essentially considered theoretical ho-
mogeneous media for which there are no correspondents in
nature. Though there are materials exposing a negative mag-
netic response and other materials with a negative electric
response, the challenge is to obtain both simultaneously in a

FIG. 13. sColor online.d For
the simulated cut-wire metamate-
rial the effective index of refrac-
tion neffsvd and impedancezeffsvd
are shown. The colored curves
represent the HEM approximation
fEqs.s10d ands11dg of the simula-
tion data for the first three unit
cells, the solid black line the
HEMsPEMd approximation, and
the dashed line the PEM approxi-
mation fsee Eqs.s51d and s52dg
obtained from the first unit cell
data. The weak additional struc-
ture in the PEM approximation
close to the resonance is indicat-
ing the beginning breakdown of
the approximation of the metama-
terial within our most simple peri-
odic medium model.

FIG. 14. sColor online.d For
the simulated cut-wire metamate-
rial the effective permittivity
«effsvd and permeabilitymeffsvd
are shown. The colored curves
represent the HEM approximation
fsee Eqs.s10d and s11dg of the
simulation data for the first three
unit cells, the solid black line the
HEMsPEMd approximation, and
the dashed line the PEM approxi-
mation fEqs. s51d and s52dg ob-
tained from the first unit cell data.
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material and, moreover, at an experimentally useful fre-
quency in or above the microwave range. After Pendry pro-
posed the first practical possibility to obtain controllable
resonant magnetic and plasmonic negative electric response
by the means of the geometric shape of electric conductors
sSRR and continuous wired in a periodic arrangement, nu-
merical simulations have been conducted, attempting to
verify the simultaneous negative magnetic and electric re-
sponse. Note that because of the technical difficulty to obtain
reliable complex reflection amplitudes from experimental
measurements numerical simulations are here the most im-
portant tool to address the question of negative electromag-
netic response. The existence of negative refraction, which is
merely a consequence of an antiparallel phase and group
velocity, has been demonstrated experimentally but provides
no proof for the actual Veselago picture of simultaneously
negativem and«. For this purpose, at typical vacuum wave-
lengths of around ten times the size of the unit cell effective
medium behavior of the metamaterials has been assumed
throughout the literature such that an effective permeability
and permittivity could be obtained in a HEM approximation.
Although the working frequency of a SRR-based LHM is
theoretically arbitrary, the fabrication technique in experi-
ments and the limited computer power in numerical simula-
tions impose certain constraints on the size of the smallest
structuressparticularly the width of the gap in the SRRd in
comparison to the size of the unit cell. As a consequence the
ratio of the vacuum wavelength around the magnetic reso-
nance to the size of the unit cell is confined as well.

Continuum HEM approximation. The effective refractive
indexnHEMsvd, impedancezHEMsvd and, derived from those,
permeability mHEMsvd and permittivity «HEMsvd published
by us13,14,20,23and others9,19,21,22for the LHM, SRR, and cut-
wire metamaterials do only in first approximation meet the
anticipated effective response of the material. For the consid-
ered polarizationselectric field parallel to the continuous
wire and perpendicular to the gap bearing side of the SRRd
and direction of propagation in the SRR plane the resonant
circulating currents inside the SRR ring should couple and
respond only to the magnetic field, affecting the behavior of
the effectivemsvd. The electric field couples to the continu-
ous wire or cut wire. However, it also couples to a separate
electric resonance of the SRR caused by induced polarization
currents oscillating linearly in the gapless sides of the SRR
which are parallel to the electric field. For other orientations,
due to the anisotropy arising from the gap in the SRR ring,
the electric field may also couple to the resonance of the
circulating currents making the total effective behavior a lot
more complicated. In some cases violating the inversion
symmetry of the unit cell also a magnetic coupling to the
electric cut-wire response is possible. Though we obtain
from the simulations a resonant magneticsmagnetic reso-
nance frequencyvm for SRR, LHMd and electricscut-wire
resonance frequencyve for SRR, cut wired response as well
as basically the plasmonic response of the continuous wire
and its corresponding contribution in the LHM, the corre-
spondence to the effective medium picture is spoiled by
partially very significant anomalies.sid Resonance-
antiresonance coupling. We expect the electric and magnetic
response of the discussed metamaterials to be independent.

However, whenever there is a resonance in Rem we simul-
taneously observe an antiresonant behavior in Re«, and vice
versa. The antiresonant structures in the real part are accom-
panied by a negative imaginary part.sii d Misshapen, trun-
cated resonances. The divergence in Ren appears to be cut
off at the edges of the first Brillouin zone and, in particular,
the negative regions of the magnetic resonance inm and
cut-wire resonance in« do not return from large negative
real part but seem to saturate in a rather shallow behavior.
The corresponding absorption peak in the imaginary parts as
misshapen and highly asymmetric too.siii d Discrepancy be-
tween n and z about the positions of the resonances. We
expect the peakssor zerosd in the index of refraction and the
impedance to appear exactly at the resonance frequenciesvm
andve, or the effective plasma frequencyvp8. From the simu-
lations, however, we find different frequencies fromn andz,
respectively. This led for instance to an “internal structure”
of the magnetic resonance as shown in Fig. 5, which can not
easily be explained within the assumed effective medium
picture.sivd Additional spectral structures. Apart from struc-
tures around the anticipated contributions of the metamateri-
al’s constituentsvm, ve, and vp8 we observe a lot of addi-
tional structure, especially at higher frequency, which can not
be accounted for. The observed artifacts in the HEM approxi-
mations are quite generic and have meanwhile been reported
by different groups. An explanation for all these effects is
given by the periodicity, see below.

The occurrence of negative imaginary parts the permittiv-
ity or permeability has been criticized by several
authors.24–26 Indeed, a physical, passive homogeneous mate-
rial may not possess any negative imaginary inm and«. As
long as the material is passive, it can only absorb energy
from the electromagnetic field. If there was any negative
imaginary part inm or « one could devise a geometry of this
material which would violate the passivity. This requirement
does not apply to the HEM approximation. Theeffectivema-
terial is defined as the homogeneous material which repro-
duces the scattering amplitudes of the metamaterial within
the given geometry, i.e., normal incidence to a homogeneous
slab of finite length in propagation direction, if a length in-
dependent solution does exist. Our retrieved HEM param-
eters provide such a length independent description of the
actual scattering amplitudes of the metamaterial. For thessta-
tionaryd scattering of plain waves at a finite homogeneous
slab in the continuum there arem and« with negative imagi-
nary parts which do not violate the passivity of the material,
as long as much weaker conditions Imm+Im «
ù0∧ Im m / umu+Im « / u«uù0 are satisfied. If we further re-
strict the scattering setup requiring the thickness of slab to be
an integral multiple of the unit cell, which is reasonable for
this type of metamaterial, we have even more freedom inm
and «. The HEM approximation is only valid for a given
geometry, there is not necessarily a physical material expos-
ing the same material parameters in an arbitrary setup.

Some authors42 have suggested a more general effective
description43 of the metamaterials which employ tensorialm
and « to take the coupling of the electric field to, and the
anisotropy of the SRR into account. Though this is certainly
an issue for arbitrary orientation of the SRR and will gain
importance in more-dimensional materials, it is not directly
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related to the deviations from the effective medium behavior
discussed above.

Apart from some additional “noise,” we could confirm the
length independence of the HEM approximation for all con-
sidered metamaterials up to 11 unit cells in propagation di-
rection. In contrast to previous work this became possible by
the introduction of an explicitly isotropic material discretiza-
tion in the TMM and the use of a carefully chosen symmetry
of the unit cell to avoid the occurrence of cross-polarization
scattering amplitudes.36 In the presence of cross-polarization
terms the second polarization can contribute20 to theT andR
of the considered polarization, e.g., the transmissiont22,1
for the passive polarization of the SRR which has the mag-
netic field in-plane and the electric field parallel to the gap-
less sides can cut off the transmission in the active polariza-
tion of the SRR in the stop bands,t11sNd, t11

N + t12t22
N−2t21

+¯, which should decay exponentially with the system
length. This effect can cause a phony length dependence in
the HEM approximation which is diagonal in the polariza-
tions.

Another issue we have to address is the vacuum wave-
length to unit cell size ratio. In the present paper we have 1
sunit celld, 5 sSRRd, 25 slow frequency SRRd; a typical value
for the metamaterials found in the literature is<10 or worse.
Strictly speaking we can expect effective medium behavior
only in thev→0 limit. As an approximation, it may hold if
the wavelength inside the structure is large compared with
the typical length scale of the metamaterial provided by the
size of the unit cell. Two points are important here: The
relevant wavelength is the wavelength inside the structure
and can be much smaller than the corresponding vacuum
wavelength if we approach the resonances atvm andve and
the magnitude of the real part of the effective index of re-
fraction becomes large. Second, we cannot knowa priori
how large the above ratio has to be to reach a reasonable
effective medium behavior. Our simulations support both
points as the deviations from the expected behavior happen
essentially when the wave vector inside the structure
q=nsvdk becomes comparable with the edge of the Brillouin
zone, i.e., the wavelength comparable to the unit cell size;
for the low-frequency SRR we find pretty good effective
medium behavior without the aforementioned anomalies
apart from a small region around the resonance. The simula-
tions indicate that to obtain a reasonable effective medium
behavior the wavelength to unit cell size ratio has to be of
the order of 30. The less losses occur in the resonances the
larger the peak inn, and consequently the required wave-
length to unit cell size ratio will be.

Continuum PEM model. The analytic HEM approxima-
tion of the periodic medium model proves that the observed
deviations from the anticipated effective medium behavior in
the HEM approximation of the real simulated metamaterials
can be caused by the periodicity or, more precisely, the re-
duced translational symmetry to the discrete group generated
by the unit cell. In particular, the model shows that those
artifacts are not related to the actual geometric definition of
the SRR and LHM resonances since the homogeneous core
in the model just uses the resonant forms ofmsvd and«svd
without any reference to their microscopic source.

The artifacts observed in the HEM approximation ulti-
mately originate from the occurrence of band gaps intro-

duced by the periodicity, analogously to, for instance, the
band structure in a crystal. In our case, the only substantial
difference is the explicit frequency dependence of the micro-
scopic material properties, i.e., the resonant forms ofmsvd
and«svd for the homogeneous core of the periodic medium
model’s unit cell. These periodicity band gaps are distinct
from the intrinsic band gaps which arise directly from the
negative product«m in the emulated response of the con-
stituents. To illustrate the behavior in the periodicity band
gaps we assume for the momentmsvd and«svd of the core to
be real. Thennsvd andzsvd in Eq. s23d are simultaneously
either real or imaginary and consequently the right-hand side
sRHSd of Eq. s23d is real as well. A periodicity band gap
occurs whenever the RHS grows outside the domain
f−1,1g of the cosine for a real argument: For the principal
branch,45 neff acquires a nonzero imaginary part inside the
gap and Reneffsvd retains the value of zero orp / skLd for all
RHS of Eq.s23d above 1 or below −1, respectively. Adding
a small imaginary part inmsvd and «svd of the core, as
should be a good approximation for the emulated metamate-
rial if we do not come too close to the resonancessabsorption
peaksd, adds a small imaginary part toneffsvd and causes
Reneffsvd to deviate slightly from 0 orp / skLd towards
p / s2kLd inside the periodicity band gap. Having thus estab-
lished the confinement of the effective index of refraction,
Reneffsvd, to the edgessd of the fist Brillouin zone or to zero,
the coupling ofm and« follows as a direct consequence.23 In
simple words: Ifn2=«m is confined and either one of«,m
exposes resonant behavior the other has to go to zero simul-
taneously. This also explains why the resonance-
antiresonance coupling and the negative imaginary parts oc-
cur only across the periodicity band gaps associated with the
resonances but not outside. For the general case this qualita-
tive behavior is complicated by the nonzero imaginary parts.

Note again that we can obtain the real part of the index of
refraction only as a residue class Reneffsvd mod 2p / skLd
which becomes immediately clear either from the length in-
dependence of the HEM approximation of the PEM accord-
ing to Eqs.s19d and s20d or from the argument about the
simultaneous congruences for different system lengths dis-
cussed in Sec. II. Therefore the pieces of RenHEMsvd that
follow the multiples of the first Brillouin zone’s edge just
coincide with either zero or the first Brillouin zone’s edge
supper and lower are equivalentd itself.

Another important observation is that a periodicity band
gap may occur in between the magnetic resonancevm and
the cut-wire resonanceve. Unfortunately, the corresponding
effective « looks similar to an electric resonance with the
attendant antiresonant structure inm. This may easily be mis-
taken as the cut-wire resonance which would be expected to
follow the magnetic resonance as the next feature in the fre-
quency spectrum. Only in the low-frequency limit the latter
behavior is actually observed. Note that the parameter depen-
dence of the phony electric resonance frequency at the lower
edge of the periodicity band gap will qualitatively resemble
the behavior of the real cut-wire resonance frequencyve.

In comparison to the TMM simulations we see, however,
too much structure, i.e., a series of periodicity band gaps
instead of only one, around the intrinsic resonances. The ba-
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sic difference between the TMM simulation and the analytic
calculation of the scattering amplitudes in the continuum is
the presence of a finite discretization mesh in the TMM,
which implies a smallest distance, hence in turn a largest
supported momentum. Obviously, this limitation will become
visible whereneffsvd grows large.

Lattice PEM approximation. In our TMM simulations the
lattice version of the PEM does better correspond to the nu-
merical data than the continuum PEM. This does also apply
to independent Microwave Studio simulations which, in con-
trast to our TMM simulations, utilize a nonuniform discreti-
zation of the metamaterial. If the discretization mesh is cho-
sen finer the lattice PEM gradually approached the
continuum PEM behavior.

As discussed above the HEM and the PEM approximation
of the real metamaterial are basically length independent,
longer systems expose the same spectral features as the first
unit cell. However, systems that consist of more than a single
unit cell in propagation direction do contributeadditional
tiny resonancelike structures in the effective material con-
stantsmHEMsvd,«HEMsvd which are also present in the effec-
tive parameters of the PEM approximationmPEMsvd and
«PEMsvd snot shownd. For a slab ofN unit cells in propaga-
tion direction these additional structures appear as tiny band
gaps, quite similar to the periodicity band gap discussed
above, at frequencies wherenPEMsvd<mp / sNkLd with m
P f−N,Ng,Z, i.e., whenever the effective refractive index
derived from the simple unit cell comes close to the mul-
tiples of the first Brillouin zone’s edge for the whole slab.
The additional structures weaken and eventually cease to be
visible in the low-frequency limit as can be seen, for in-
stance, for the SRR in Figs. 7 and 8. Note that again the
behavior is generic: it appears in our TMM simulations for
LHM, SRR, and also cut-wire and continuous wire metama-
terials snot shownd, it has also been verified inMICROWAVE

STUDIO simulations using a different numeric technique. As
there is no such length dependence in the analytic periodic
medium model, we interpret this additional “noise” as a limi-
tation of the PEM approximation of the real metamaterial
which starts to see some internal structure apart from the
explicit periodicity. It is not yet clear whether the groups of
N peaks directly at the magnetic resonance are related to this
problem. For these there are at least two other interpreta-
tions: They may be caused by the coupling of successive
SRRs in propagation direction which would lead to the split-
ting of the resonance frequencyvm as for the eigenfrequency
of coupled identical oscillators, or the finite accuracy of the
numeric simulation data could, in particular around the reso-
nances, lead to a residual explicit length dependence.

We demonstrate above that the PEM approximation of
real LHM and SRR metamaterials is good in the region
aroundvm if the corresponding vacuum wavelength in as
small as five times the size of the unit cell. Then we obtained
the anticipated effective behavior inmHEMsvd,«HEMsvd and
all the anomalies and additional features seen in the HEM
approximation arose from the explicit periodicity. If we
move to even higher frequency where the vacuum wave-
length is close to the size of the unit cell, alsomHEMsvd and
«HEMsvd start to develop unexpected features such as addi-

tional magnetic response around the cut-wire resonance. Al-
though even then the PEM spectrum is not nearly as erratic
as the corresponding HEM spectrum, this indicates the
breakdown of the PEM approximation. This is not surprising
since we now reach the photonic crystal limit and the inter-
nal structure of the metamaterial’s constituents must become
visible and no “effective description” should be possible any-
more.

Physical significance ofmHEMsvd and «HEMsvd. Although
complicated by the periodicity artifacts, such functions are
useful to describe the scattering behavior of the metamaterial
and allow to make prediction how to design and tune their
constituents such as the SRR or the continuous wires. They
help to interpret and understand the scattering spectra ob-
tained from experiments and simulations. Last but not least
they establish the connection between the low frequency
limit where the plain homogeneous medium picture applies
with the periodicity artifacts going to zero and the photonic
crystal limit which is dominated entirely by the periodicity
band structure. All practical realizations of SRR+wire type
metamaterials seem to reside within this transition region.

Momentum-dependent parameters. In order to take into
account the periodic structure of real metamaterials, we con-
sidered the PEM model as a very simple explicit example of
a periodic medium. Instead of qualifying the specific geom-
etry of the model used, we may alternatively introduce
k-dependent effective parametersmsk,vd, «sk,vd to describe
the spatial distribution of the electromagnetic response in the
PEM. Thesek-dependent effective parameters completely
characterize the effective medium model. For the PEM
model defined in Fig. 1 we find by Fourier transformation
«sk,vd=s2pd−1/2edz«sz,vdeikz the representation

«sk,vd = Î2p«coresvd
eiksL−bd − eika

ikL
o

mPZ
dSk −

2pm

L
D ,

s53d

and correspondingly formsk,vd. As a generalization of the
periodic medium approximation we could further ask, which
arbitrary k dependence of«sk,vd and msk,vd, i.e., which
spatial distribution of the effective material parameters, de-
scribes a given metamaterial best. Although this might be
desirable as a descriptive tool for the engineering of metama-
terials, it is clearly beyond the scope of this paper.

What is the actual left-handed band?Finally we want to
comment on the actual extent of the left-handed interval of
the LHM as it concerns experiments and applications. Obvi-
ously, the bands with Reneff,0 retrieved via HEM and
PEM approximation differ considerably in widthsFig. 9d
which raises the question, where to expect the left-handed
behavior. We argue, that the correct region is given by the
HEM approximation. If there is a length-independent HEM
approximation, the scattering behavior of the metamaterial
can be described assuming plain-wave solutions inside the
homogeneous unit cell. These plain waves will possess a
wave-vectorq related to the vacuum-wave-vectork by the
retrieved negative index of refractionq=nHEMsvdk. They co-
incide with the nonperiodic factor of the Bloch waves de-
scribing the periodic medium, i.e., coincide with the Bloch
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waves at the edges of the unit cells in the metamaterial.
Therefore asusually dampedd plain wave with negative
phase velocity will exist inside the metamaterial whenever
RenHEM,0. This interpretation is also supported by experi-
mental measurements.9 Note that this frequency interval is
wider than the interval with simultaneously negative
Re«HEM and RemHEM. The PEM approximation indicates
that the isolated local response of the SRR and wire, without
the effects of periodicity, would lead to a much smaller left-
handed bandscompare the behavior of the low-frequency
SRR, Figs. 7 and 8d. The modifications of the generic re-
sponse of SRR and wire by the band structure, in particular
by the emergence of periodicity band gaps, arising from the
inherent periodicity of the metamaterial, greatly enhances the
width of the negative index band in metamaterials which see
strong artifacts from the periodicity. This concerns virtually
all published metamaterials with a vacuum wavelength to
unit cell length ratio smaller than approximately ten. At
much lower frequency, truly effective homogeneous behav-
ior will emerge, the periodicity band gaps disappear, and
HEM and PEM description coincide.

Geometry of the PEM model. As we demonstrated in Sec.
III, for the quasi one-dimensional scattering problem of a
system comprised of an integral number of unit cells in
propagation direction, we can exactly describe any HEM
by a family of PEM, parametrized by the geometry
G=sna,nd,nbd of the periodic medium modelssee Fig. 1d, in
terms of effective parametersmPEMfGgsvd and «PEMfGgsvd.
For a simulated metamaterial, in general all effective param-
eters, mHEMsvd and «HEMsvd as well as mPEMfGgsvd and
«PEMfGgsvd, will show “unphysical” behavior caused by the
internal spatial structure of the unit cell and the periodicity of
the metamaterials. If for a real metamaterial the local elec-
tromagnetic behavior of the constituents can be abstracted
from their geometrical form, approximated by simple reso-
nant and plasmonic response functionsmSRRsvd and«wiresvd,
respectively, and separated from the effects of the periodicity
si.e., band structured, then there is a particular geometry of
the PEM which approximates physical parametersmPEMfGg
3svd<mSRRsvd and«PEMfGgsvd<«wiresvd without the usual
artifacts discussed in this paper. In our simulations the best
such approximation was obtained if the lattice PEM contain-
ing a single plain of scatterers in the unit cell, i.e., for a
geometryG=s5,1,4d.

VI. CONCLUSION

We have investigated the influence of the inherent peri-
odic structure always present in metamaterials which are
built from the repetition of a single unit cell on the effective
medium approximation. It has been shown analytically that
all the previously observed violations of the anticipated ef-
fective medium behavior of thessingle-ringd SRR and LHM
involving a single magnetic and a single electric resonance
can be explained in terms of the periodic structure: A very
simple stratified periodic medium model involving slabs of
vacuum alternating with slabs of a homogeneous material
with simple resonantmsvd and «svd can reproduce all the
artifacts such as resonance-antiresonance coupling in

mHEMsvd and«HEMsvd, negative imaginary parts in either«
or m, truncated, misshapen resonances, additional band gaps
and the complicated high-frequency behavior found in the
HEM approximation of numerically simulated SRR arrays
and LHM, but also metamaterials built of continuous wires
and of cut wires. In good approximation, the effective behav-
ior can be decomposed into an effective behavior of the con-
stituents of the metamaterial and an explicit contribution of
the periodicity. Remarkably, the average contribution of con-
stituents such as the single split-ring behaves much as ex-
pected from the assumed homogeneous medium picture,
which can only be justified in the low-frequency limit where
the wavelength inside the structure is large compared to its
geometrical size, up to frequencies where the vacuum wave
length becomes comparable to the size of the unit cell. This
allows a more reliable effective description and interpreta-
tion of real metamaterials in terms of a periodic effective
medium sPEMd instead of the conventional homogeneous
effective mediumsHEMd with all the hard to understand ar-
tifacts. The effects caused by the periodicity are generic, they
do qualitatively not depend on the particular geometry cho-
sen for the metamaterial and universally apply to SRR,
LHM, continuous wire and cut-wire materials. Obviously,
the impact of the periodicity is noticeable throughout the
range of thel0/L ratio <5¯10 si.e., vacuum wave length/
unit cell lengthd actually found in published simulations and
experiments for left-handed and related metamaterials. Our
simulations indicate that an unencumbered homogeneous ef-
fective medium behavior, though reachable in the low-
frequency limit, would require al0/L ratio in the order of 30
or larger which is geometrically not easy to obtain in real
samples. We investigated the difference between the con-
tinuum and the lattice formulation of the PEM approxima-
tion and found the latter to be better suited for application to
our numerically simulated scattering data for real metamate-
rials obtained with a lattice-TMM implementation.

The PEM approximation may provide a valuable tool to
understand the various features observed in the scattering
spectra of real metamaterials in experiments and simulations.
In the present paper we essentially discussed the vicinity of
the magnetic resonance of the SRR. Further work shall em-
phasize on the frequencies above the magnetic resonancevm
including the cut-wire resonanceve.

We expect the impact of the metamaterial’s periodicity to
be noticeable also in higher dimensional structures. Because
the unit cells of those structures tend to be more complicated
including couplings of SRRs in the different directions the
separation of the “real” effective response of the constituents
and the structures produced by the periodicity constitutes an
even more imminent issue for understanding.
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44We consider the transfer matrixT for a planar stratified medium

in the z direction. Because divD=0, divB=0, the source-free
Maxwell equations only allow for four independent field com-
ponentsF=sEx,Ey,Hx,Hyd, Fsz+dzd=TszdFszd. The eigensys-
tem hk,Fkj of the transfer matrix inside the strata,TszdFkszd
=eik dzFkszd, defines the plain wave basesincluding propagating
and evanescent wavesd for the scattering problem. Localz isot-
ropy implies that with eachk also −k is eigenvalue such that the
wave basis splits into right- and left-going waves, while transla-
tional invariance of the stratified medium'z factorizes the
transfer matrix with respect to the momentumki parallel to the
strata which is preserved across interfaces. Within asuku ,kid sub-
space theE andH fields are dependent, coupled by the Maxwell
equations, such that we can decomposeF as a linear combina-
tion of only two polarizations, e.g., TE and TM mode. For the
TE mode, the electric fieldE is parallel to the interface and we
can express it inside each stratum as a linear combination
sAeikz+Be−ikzdeikiri. For the TM mode the same applies to the
magnetic fieldH. In either case we can write a transfer matrix
for the wave amplitudes across a single interface assA8B8dT

=Tkk8szdsABdT, whereTkk8szd=fk8
−1szdTkk8fkszd can be written as

product over phase factorsf and the location independent ma-
trix Tkk8 which coincides with the transfer matrix for the fields
sck c−kd=sAeikz Be−ikzd instead of the amplitudes. In explicit
form we have

fkszd = Seikz 0

0 e−ikzD, Tkk8 =
1

2
S1 + zkk8 1 − zkk8

1 − zkk8 1 + zkk8
D ,

with zkk8=m8k/ smk8d for the TE and«8k/ s«k8d for the TM
mode. The transfer matrix for a vacuum-terminated stack ofN
layers has the composition propertyT13=T23T12 and inserting a
virtual vacuum interfaceTknkn+1

=Tkvackn+1
Tknkvac

between each
adjacent two layers we get an expression

Ttotalskvacd = fvac
−1 szNdFp

n=1

N

Tslabszn − zn−1dGfvacsz0d

with the interfaces located atzn and the local transfer matrix of
a single layerTslabsdd=Tknkvac

fkn
sddTkvackn

which is given ex-
plicitly in Sec. II.
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45We define the principal branch of argszd as −p,argzøp with
a branch cut along the negative real axis, continuous from
the second quadrant. Then the principal branches of
Îz= uzu1/2 expfi argszd /2g and lnszd=lnuzu+ i argszd can be defined
with the same branch cut and continuity from above. Using

2 cosszd=expsizd+exps−izd we obtain the principal branch
arccosszd=−i lnsz+ iÎ1−z2d with a branch cut on the real axis
for zP s1,`d, continuous from below, andzP s−` ,−1d, continu-
ous from above.
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