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We study the frequency dependence of the effective electromagnetic parameters of left-handed and related
metamaterials of the split ring resonator and wire type. We show that the reduced translational symmetry
(periodic structurg inherent to these metamaterials influences their effective electromagnetic response. To
anticipate this periodicity, we formulate a periodic effective medium model which enables us to distinguish the
resonant behavior of electromagnetic parameters from effects of the periodicity of the structure. We use this
model for the analysis of numerical data for the transmission and reflection of periodic arrays of split ring
resonators, thin metallic wires, cut wires, as well as the left-handed structures. The present method enables us
to identify the origin of the previously observed resonance-antiresonance coupling as well as the occurrence of
negative imaginary parts in the effective permittivities and permeabilities of those materials. Our analysis
shows that the periodicity of the structure can be neglected only for the wavelength of the electromagnetic
wave larger than 30 space periods of the investigated structure.
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I. INTRODUCTION
. . . 1- —p— 1
Recent progress in studies of left-handed metamatérials o) = o’ - ol tiye' D

(LHMs) confirmed that the fabrication of structures with | ) .
negativeeffectivepermittivity and permeability, and their ap- tYPical for lattice of SRRIRef. 4 in the vicinity of the mag-
plication in technical praxis is possible. The most promisingn€tic resonance frequenay,. The effective permittivity is
structures are based on the combination of periodic arrays (5*eternl|5n§:7ol by the electric response of the array of thin
metallic split ring resonator€$SRR$ and thin metallic wires, WI" es®
a design proposed theoretically by Penetyal>~* and ex-
perimentally verified by Smitlet al>’

It is assumed that in a well defined frequency interval
both effective permittivity and permeability of LHM are si- and is negative if the frequency is smaller than the plasma
multaneously negative. Consequently, also the refractive infrequencyw,. Transmission data, obtained using either the
dex is negativé. This theoretical prediction was supported transfer matnx methdd or commercial softwaré was ana-
experimentally by measurements of the transmission of th&/zed to find the dependence of the resonance frequency
electromagnetidEM) wave through the LHM: A transmis- on the structural parameters of the SRR and on the design of
sion peak was observed in the frequency region where théhe unit cell of the LHM structure.
LH band is expecte&® Negativeness of the index of refrac-  Further progress in numerical methods brought more ac-
tion was verified experimentally by the Snell's law curate data and strong evidence that the effective parameters
experiment and confirmed later by other experimef8.  of the LHM differ considerably from the theoretical predic-
Numerical simulations were performed which also observedion (1) and(2). Although the main properties—resonant be-
a transmission peak in the resonant frequency intéfval. havior of the magnetic permeability ai,, and negativeness
Effective electromagnetic parameters were calcutdtéy  of the effective permittivity—are clearly visible in the data,
comparison of numerically obtained transmission and reflecthe effective medium picture is spoiled by partially very sig-
tion amplitudes of the LHM with theoretical formulas for a nificant anomalies.
homogeneouslab. The obtained results confirmed that the Resonance-antiresonance coupliffge expect the electric
refractive index of the LHM is indeed negative in the reso-and magnetic response of the discussed metamaterials to be
nant frequency interval. Moreover, the obtained frequencyndependent from each other. However, whenever there is a
dependence of the effective permittivity and permeabilityresonance in Rg, we simultaneously observe an antireso-
also agreed qualitatively with theoretical predictions. In par-nant behavior in Re (Refs. 14 and 19-22and vice versa®
ticular, the effective magnetic permeability shows a resonarntThe antiresonant structures in the real part are accompanied
behavior by a negative imaginary pait:23

s(w)=1- —p— 2
w? +iyw
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Misshapen, truncated resonancé@$e divergence in Re  vacuum. In this formulationg and x of the homogeneous
appears to be cutoff at the edges of the first Brillouin zoneslabs are free from any modifications of the resonant behav-
and, in particular, the negative regions of the magnetic resaor. To show the role of the periodicity of the metamaterials
nance inu and cut-wire resonance i do not return from  more clearly, we also analyzed a lattice of SRR in which we
large negative real part but seem to saturate in a rather shaltied the gaps of the SRR by a dielectric with very strong
low behavior. The corresponding absorption peak in thejielectric permittivity. This decreases the magnetic resonant
imaginary parts is misshapen and highly asymm_e_tnczfoo. frequency so that the wavelength of the incident EM wave is

Discrepancy between n and z about the positions of thes imes Jarger than the lattice period. We show that effective

resonancesWe expect the peakior zeros in the index of  narameters again do not possess any deviations from reso-
refraction and the impedance to appear exactly at the res§—

: X X nt formula(l).
nance frequency. From the simulations, however, we fin ant formula(1)

. . ! ; A discussion of the applicability of various proposed
different frequencies from andz, respectively. This leads, models to the analysis of transmission data is given in Sec.

for instance, to an “internal structure” of the magnetic reso- We discuss how the periodicity and anisotropy of the

nance as shown in Figs. 5 and 6. This structure cannot easil fruct ol the t o litud d. sub
be explained within the assumed effective medium pictdire, SIrUCtUre influénce he transmission amplitudes and, subse-
quently, the effective parameters of the metamaterials. Final

Additional spectral structuresApart from structures ) X ‘
around the anticipated contributions of the metamateriar£onclusions are given in Sec. VI.
constituents, we observe a lot of additional structure, espe-
cially at higher frequency, which cannot be accounted for.

The above described observation, especially the negative- Il. HOMOGENEOUS EFFECTIVE MEDIUM
ness of the imaginary part of effective permittivity or perme-
ability, raised objectior$-2° of other groups. Efré$ argued

;r;/asti;;eblélggﬁs%ag??;ebgeﬁzz:gﬁ;moitter?e ?%’e?aggﬂggg27eou§cattering formulas. For the transfer matridgsfor a single
In this paper, we show that the observed artifacts in theSIICe of vacuum and g for a single slice of homogeneous

i A : . Material with the thicknessd we find in wave

homogeneous effective approximation are quite generic tatigh
They are given by the periodic structure of the investigated‘e[)resen
metamaterials. The periodic structure becomes important ekd o a(d) B(-d)
when the wavelength of the electromagnetic wave is compa- ~ To(d) = 0 eikd): Tsadd) = A a-d)
rable with the lattice structure of the materd&Me proposed B “«
a more general description of the LHM, based on the conceptith the elements
of a periodic effective mediunfPEM). This method enables .
us to distinguish between the resonant frequency dependence a(d) = cogqd) + I—<z+ l)sin(qd), (3)
corresponding to Eq1) and effects of the periodicity of the 2 z
structure. We apply the PEM method for the analysis of nu-
merical data obtained by the transfer matrix metkokliM ). i 1)\ .

The paper is organized as follows. In Sec. Il we first ex- B(d) = 5(2‘ E)S'”(qd)- (4)
plain basic ideas of the homogeneous effective medium
(HEM). Special attention is given to the correction of theIn the continuum formulation and for normal incidence the
phase of the EM wave at the interfaces, which is crucial formomentuny inside the slab is related to the momentkiim
any retrieval procedure. the vacuum by the index of refractiarik) =q/k, the imped-

In Sec. Il we define and analyze one dimensional peri-ancez is defined byz=u(w)k/q=q/[e(w)k] for the TE and
odic structures. The analyzed medium consists of thin slab§M mode, respectively. Hereu(w) and e(w) denote the
of homogeneous LH material separated by slabs of vacuunfrequency-dependent complex permeability and permittivity
We show that the approximation of such periodic medium byof the homogeneous medium. On the lattice, i.e., when we
a homogeneous one give us effective parameteanid ©  are going to compare with TMM simulation results, we have
which possess unusual frequency dependences, similar to take the modified dispersion relations 2-2(&9s w?>=0
those observed when we approximate metamaterials by a hin the vacuum and 2-2 ctp — u(w)e(w)w?=0 inside the
mogeneous medium. This proves that the periodicity oflab into account. Then we have a modifiegtaco$l
metamaterial must be taken into consideration in the analysis ;¢ (1 - cosk)] which gets noticeable at higher frequencies.
of the effective parameters. Using the interrelation between the transfer matrix and the

The periodic effective medium is analyzed in two differ- scattering matrix which defines the transmissitn and re-
ent formulations: continuougSec. Il A) and lattice(Sec.  figction (r-.) amplitudes

[l B). The latter is more relevant for the analysis of numeri-

cal data since all known numerical algorithms use spacial t, r, to—r o rttt

discretization. S= e a4
- e t

In Sec. IV we analyze transmission data, observed from

numerical simulations of periodic lattices of SRR, LHM, and we can calculate the transmission and reflection amplitudes

cut wires. We map these structures to periodic effective mefor a sample composed of a left vacuum slice of length

dia which consist of homogeneous slabs separated bfpllowed by N homogeneous unit cells of lengthin propa-

For the one-dimensional plain wave scattering problem at
a homogeneous finite slab it is straightforward to obtain the

5

r- t

245105-2



IMPACT OF INHERENT PERIODIC STRUCTURE ON PHYSICAL REVIEW B 71, 245105(2005

gation direction, and terminated by a right vacuum slice ofsingle unit cell. For physical reasons we can assume a
lengthb, smooth frequency dependence between resonances which en-
ables us to obtain Req(w) as the corresponding residue

_= LKN_L, (6)  class of piecewise continuous functions. The correct branch
a(- d)e k@) then has to be chosen exploiting additional physical informa-

tion or assumptions of the model such as the behavior of

r,=e KNLg(— d)e k@bl (7)  nes(w) at the plasma frequency, in resonance induced trans-

mission gaps and periodicity induced band gégliscussed
laten. For knownngy(w) andz.(w) the effective permeabil-
éty w and permittivitye can be defined as

In order to relate to the simulated scattering amplitudes com
puted numerically by the TMM by decomposition of the EM
waves in the vacuum right of the sample with respect to th

vacuum wave base left of the sample, it is convenient to Het(©) = Nogr( ) Zogr( @) , (12
introduce the normalized scattering amplitudésand R
which, afterN unit cells, take the form £oit(®) = Nogi( @)/ Zes (@) (13)
T=t. &N = a7~ d)eh®, (8 respectively.
. Results for the effective parameters of the HEM approxi-
R=B(- d)e k@b, (9)  mation of simulated metamaterials such as arrays of SRR or

In the continuum the scattering amplitudes of the homogefUt wires, LHMs, and even multigap SRRs have been pub-

; . ) . ished by several authorfg:31419.22.2328rhey all expose de-
neous slab are typically defined from interface to interface ot . ; . ; . : X .
ails which are in conflict with the simple effective medium

the sample, i.e., assumireg=b=0. In the numerical simula- S .

. L X o behavior in terms of a resonapfw) and a plasmonie(w),
tion this is not possible because of the lattice: we alwaysOri inallv proposed by Pendrv. even under the assumption of
have to make 1/2 vacuum-transfer-matrix step from the ginatly prop y Y, P

last left vacuum slice into the sample and another 1/A" additional eleqtric response of the SRR. Typical examples
vacuum-transfer-matrix step out of the sample onto theﬁégoﬁsﬁc:?aonvgi?relgolrjfr?(.:eS(':o% ﬁn af‘d( 1)0 éﬁ‘g re(su;tsacs_how
first right vacuum slice. Therefore, the TMM scattering _ 1ance couplingugy{ w Geifl®) @

amplitudesT™M) and R™M) are related to the normalized companied by negative imaginary parts, apparently different

T andR involving an additional vacuum-phase compensatiorf €50nance frequencies fagy and ey, the cutoff of the ex-
T=ekT(TMM) gnd R=e"kKR(TMM) pected resonant positi&RR) or negative(LHM) index of

r{efraction, a misshapen, strongly asymmetric anticipated
magnetic resonance in for the SRR and LHM or electric
resonance ire for the cut wire, and finally a lot of unex-
plained additional structurderratic stop bands and pass

Now we can resolve the above scattering formulas wit
given amplitudesT and R obtained from the simulatiofor
measurementof a metamaterial with respect to the material
parameters impedan@w) and index of refractiom(w). If .
the solutions arévirtually) independent on the length of the barc];jlj)rng?é?qt;?vreﬂr?g#g?i?;l simulations suagested that com-
sample those parameters define the homogeneous effective 99

medium (HEM) representatioor approximationof the re- 10 22 0.8 TERe BIORETE (88 0l etama.
spective metamaterial. Then we h&ve P % ys p

terials as they are composed of repetitions of a single unit

(1+R)?2-T2 cell. To prove that the behavior is generic and really inde-

Ze(w) = 1-RI-T? (10)  pendent on the details of the unit cell, and that we can repro-
duce each of the effects above purely as a consequence of

periodicity in the propagation direction, we investigated the

2 2
&) + 27 (11  most simple model for an effective medium with a nontrivial

1
n = + — arcco m, St S
et(@) kL { 2T kL periodicity.

with me Z. Note that we obtairz.; and ng; from the scat-

tering ampllt_ude_s onlyuptoa common sign and the r_eal part Ill. PERIODIC EFFECTIVE MEDIUM

of the effective index of refraction, Rg¢ only as a residue

class. The former issue can be resolved by imposing addi- To study the impact of the periodicity, or more precise the
tional physical requirements, for instance Re0 (causal- reduced translational symmetry of the sample in propagation
ity). The problem of the residue class for Rg can be ad- direction, we consider a sample composed of a repetition of
dressed by considering different lendth}, i e | CZ. Then  the unit cell shown in Fig. 1, finite in direction of propaga-
we obtain a system of linear congruences, the solution ofion and infinite perpendicular to it. The unit cell consists of
which—if any—is a reduced residue class moduloa thin homogeneous core of thicknedscharacterized by
27w/ (kgedL;}) given by the greatest common divisor of the arbitrary u(w) ande(w), sandwiched by two slabs of vacuum
lengthsL,. Since due to the inherent periodic structure of realwith thicknessa andb which break translational invariance.
metamaterials in simulations and experiments the lengths df is the length of one unit cell\ the number of unit cells in
the sample can only be integral multiples of the unit cell’spropagation direction. To make a connection to our metama-
length, the minimum possible ambiguity for Rg; will be a  terials we choose a simple Lorentz-type resonant form of
residue class modulo72 (kL) whereL is the length of a w(w) and/or e(w) to represent the magnetic and cut-wire
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. d A < A p:cos(qd)cos{k(L—d)]—%(z+})sin(qd)sir{k(L—d)].
@ ., ey JNERE

The wave vectog=n(w)k and the impedance w) refer to
FIG. 1. The layout of the single unit cgl) and of a finite slab  the homogeneous core of the unit cell. For the normalized

of the model periodic medium are shown. The shaded regions indiscattering amplitude¥ andR after N unit cells we find
cate the homogeneous core of the widtWhich is characterized by

the chosen appropriately model functiop$w) and £(w), sand- T=[a(-d)e ™ @PUy_4(p) - Un—o(p)] ™, (17)
wiched by two vacuum slabg. is the length of a single unit cell

andN the number of unit cells in the slab in propagations direction. R=B(- d)e"ik(a"b)UN_l(p)T. (18
Periodic boundary conditions apply in the directions perpendicular ) ) )
to the propagation direction Now we shall discuss what happens if we try to approxi-

mate the explicitly periodic medium discussed above by a
response of the SRR. To model the LHM we would add homogeneous effective medium. This basically corresponds
P ' %o our previous attempts to describe the periodic metamate-

plasmonic term ins(w) to account for the response of the . : !

continuous wires. Now we can calculate the scattering amrIaIS by an homogeneous effective medium. We have two
. e . . options: First, we could simply consider the analytic scatter-

plitudes for this model and subject them to the HEM inver- P bl Y

. : . . ) o ing amplitudeg(17) and(18) derived above to be those of a
sion d|§cus_sed in the previous section. The deSC”p@’” homogeneous system and try to solve for effective material
approximation of the scattering amplitudes for a given

metamaterial in terms of the effective parameters of such arameterse(N, w) and uer(N, w). This has the advantage

periodic medium as defined in Fig. 1 will be denoted a “pe- at the approximation can deal with a possible residual
riodic effective medium(PEM) ' length dependence of the approximate homogeneous me-

The following results will show that this periodic medium dium, leaving an explicit possibility to assess the quality of

: . the approximation. The disadvantage is that we have to
can expose all the problematic effect discussed above. In a i .
. . handle the rather complicated structure of the formulas aris-
subsequent section we shall then demonstrate that this also .
. ' : . .~1ng from the Chebyshev polynomials. The second approach
applies to the simulated real metamaterial. Their ef'fectlveIS to assume that an exact correspondence of the periodic
behavior can be decomposed into a “well-behaving® eﬁec'effective medium to an homo eneoF:Js effective mediSm ex-
tive response of the resonances and a contribution of periodEgtS This assumption is su gorted by the lenath indepen-
structure described by the PEM. ' P P y 9 P

dence(after appropriate phase compensatiohthe conven-
. . tionally inverted simulation data. If there is such a
A. Continuum formulation homogeneous effective medium we can write the transfer

With the transfer matrice®, and T, introduced above matrix of the periodic medium in terms of the transfer matrix
we can express the total transfer matrix of a finite slab of thd0" the homogeneous slab
periodic effective medium defined in Fig. 1 in the form T61(NL)[To(b)Ts|ab(d)To(a)]N :T(_)l(NL)(eﬁ)Tslab(NL)a

(19

which implies in particular for a system length of only a
single unit cell

AN WA
o | = To NLITo0) TaafdTo@1Y| ).
As expected from the-inversion symmetry both transfer
matrices T, and T, are unimodular, obviously is d& To(D) T D To(@) = T4 L). (20)
=1 and a short calculation yields dBf,=a(d)a(-d)
+3%(d)=1. Therefore we can easily calculate fith power
of the unimodular X 2 matrix above by diagonalizing it and . o !
computing theNth power of its eigenvalue¥.Using the in- In turn |mpl|e§ length ||_1d§apendence of the homogeneous
terrelation between the transfer matrix and the scattering m&ective medium description. Note thdl.{d) has only
trix, we obtain the transmission and reflection amplitudedW© independent elements, becayse)=-A(-d) is anti-

corresponding to those computed numerically by the TMM Symmetric and the determinank(d)a(-d)+g%(d)=1 is
fixed, such that we can calculate the matrix elemer(t

g IkNL 19 =[1-B%-d)]/ a(-d) and B(d)=-B(~d) from a(-d), B(-d).
= A \aik(@th) _ , The assumptioii20) imposes a restriction on the boundaries
a(-dje Un-1(P) = Un-2(P) of the periodic medium in propagation direction. The off-
' ' diagonal elements of g, are antisymmetric but on the left
r,=e *NLg(— d)e @by, (p)t_. (15)  side of Eq.(20) this symmetry is broken by the phase factors
ek@b gnd @D introduced in the off-diagonal elements
Here, theUy=Uy(p) are the Chebyshev polynomials of the by the two vacuum slabs. As a consequence the description
second kindU, () =sin (n+1)acosz]/(1-z%)'?, taken at the as a homogeneous medium is only possiblegeb=0. In
argument addition to choosing a symmetric unit cell in the first place

Since for a homogeneous slab the identif L)
=TqadNL) holds, finding a°™T (L) that satisfies Eq20)

t
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N B oy @
N b oy @

FIG. 2. (Color online) The HEM inversion Egs. (24) and (25)] of the analytic continuum PEM scattering amplitud&ss. (17) and
(18)] for model SRR-type material parametess=0.13, w,,=0.16 for the magnetic an@.=0.4, w,=0.5 for the electric response and
y=10"[see Egs(29) and(30)]. The homogeneous core located in the middle of the unit cellowds/ 10 thick. The retrieved redred,
purple and imaginarygreen, turquoiseparts of effective parameters are shown as a function of frequentie dashed lines show the real
(purple and imaginary(turquoise parts of the anticipated homogeneous paramdtégs. (29) and (30)] and corresponding index of
refraction and impedance. The dash-dotted black lines in,Rendicate the upper edge of the Brillouin zomggge=Keggd k=mar/ (KL).

we may alternatively compensate the faceok@™® in the cogneq(K)KL] = cognkd)cogk(L - d)]

reflection amplitudeR [which works simultaneously for all

lengths, see Eq18)], effectively redefining the boundaries - }(24. E)sin(nkd)sir{k(L -d), (23
of the system such that the slab is centered in the unit cells. 2 z

In terms of the(normalized scattering amplitude$ and R,

. . " wheren(k) andz(k) are the parameters of the material slab in
for the single unit cell we then have the conditions eren(k) andz(k) P

the middle of the unit cell of the periodic effective medium.
With the p defined in Eq(16) andg=n(k)k we can write

a =)D =T=agf(- L), (21) 1 27

Neg(K) = £ WL arcco$p(n,z; k)] + Em (24)

_ D= _ with me Z. The problem with the signs ai.s and z;, as
A= dT=R= Ber(= LIT. (22 well as with the ambiguity of Rag is similar, and can be
resolved the same way as for the case of the homogeneous

We already know how to invert the right side of these equaSiaP discussed above. Analogously we can express the im-
tions, this is just what we did in the retrieval procedure forP€dancez; of the effective homogeneous medium in terms
the HEM in the previous sk?ctcii)on. Defining L((ang)rmalized()f the n andz of the homogeneous core as
scattering amplitudeg’ =Te k-9 and R"=Re™* "9 we e -
could apply the same procedure to the left side. Note that the Zei(k) = £ \/2p+ s 1/z)s!n(qd) ,
possibility that we can always solVieandR for eq4(w) and 2p* - (z- 1/z)sin(qd)
uer(w) guarantees a solution of EG0). In other words,  whereq=n(k)k and

there is always an exact, length-independent description of

the periodic effective medium as a homogeneous effective , . 1 1)

medium characterized bye(w) and wes(w). There is no P = cogadsirlk(L —d)] + §<Z+ E)sm(qd)cos{k(L —d)].
freedom to chose the boundaries of the homogeneous me- (26)
dium relative to the periodic medium. As shown above, we
get the full information about the homogeneous effective me- The parameters of an effective homogeneous medium de-
dium which describes a given periodic effective mediumscribing the periodic material from Fig. 1, which have been
characterized by(k),z(k) and the geometrg,L already from  obtained from the formulag4) and (25), are shown in Fig.

the first unit cell. Inserting the renormalized transmission an® for a concrete example of SRR-typdw) and e(w). For
reflection amplitude$21) and(22) for a single unit cell into  the homogeneous core in the middle of the unit cell we have
the inverted scattering formulas above we obtain chosen

(25
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e(k) =1+ (L/d)[ex(k) — 1], (27) applied to the periodic effective medium model of the LHM

(not shown. Here, we particularly miss the cutoff at the

w(K) =1 +(L/d) [ (k) = 1] (29) bottom of the negative.s region. In either case the under-
_ ) lying lattice in the simulation starts to become visible. Since
with model functions the lattice has a finite lattice constant it cannot support arbi-
2 2 trarily large momenta, such that we expect additional effects

w - w
pn(w) =1 -——"—"— (29 if the continuum momenturg reaches the order of/ aice
(ORI 3§70

In order to understand also the details of the retrieved HEM

and parameters in our simulation of real SRR and LHM metama-
5 ) terials we have to take the discretization lattice of the em-
_q__ Wep~ We ployed TMM into consideration. To see the modification of
ep(w)=1l-——>5— (30) . . o= .
0= wgtiyw the continuum results by the discretization lattice we have to

derive the scattering formulas for the periodic medium

to emulate the anticipated magnetic and elettriesonances model on the lattice.

of the SRR. For a LHM-type behavior we have to add the
plasmonic response of the continuous wire in the permittivity

W2 W2 = 2 B. Lattice formulation
=l-— " 31 ,
enle) W’ +iyw - oitiyo 31 We follow the TMM introduced for the Maxwell equa-

_ _ _ _ _ tions by Pendr§*~34in the formulation described by Marko$
According to a simple effective medium picture, we would 54 Soukoulid? The electric and magnetic field, together

expect that we can approximate a homogeneous unit Cefliih the spatially dependent material relative constants
characterized byy,(w) andsyy(w) by concentration the mag- wre(f) and e,(r) which define the metamaterial, are dis-
netic and electric polarizations into the homogeneous core gfoti-ed on the bonds of mutually dual lattides} and{f}.

Fhe periodic medium. .Figure 2 show; the actual E,’ﬁeCtiveWith the renormalized material constari$m) =i wege,e(M
impedancez.(w) and index of refractiomgs(w) obtained +e/2) and (M) =i wpuoue(M-8/2), used throughout this

V'f"tlhﬂgﬁ HEM |r1[vzr5|?rn ?f the pde_rlodlg rﬁedggm.thr?pa)glng section, we can write the transfer matrix equations for a
Wi € expected eflective medium benavidashed linG stratification in thez direction for the two independent

we clearly see the typical anomalies in the shape and pos “omponentsi e {x,y} of the electromagnetic field. Using

tions of the resonances, the same qualitative behavior as ob- o - .
’ o : riodi ndar nditions in thez plane wi n
served for real SRR metamaterials in the literature and ou_quas)pe odic boundary conditions in thez plane we ca

own previous work. The effective parameters of the HEMlntroduce a Fourier representation of the fields with respect
previo i o Pa to this plane defining an in-plane momentgmTo derive a
approximation of our periodic medium model show the

resonance-antiresonance couplingzgy(e) and e.4(w) to- scattering formula corresponding to the continuum case con-
: € coupinguei o Eeffl @ sidered in the previous section we restrict ourself to the most
gether with the negative imaginary part pgqs(w)<O

) simple case of normal incidence, i.e., zero in-plane momen-
a“’“r?d the magnetlp resonance frequemg.y and also a tum q=0. Then the transfer matrix for normal incidence
very involved behavior close to the cut-wire resonange takes the form
The effective index of refraction is cut off at the edge of the
Brillouin zone which corresponds to the appearance of addi-

tional band gaps origination from the periodicity rather than E _ 1 A(m,) E

from the underlying material properties. The qualitative be- H m+1_ B(m,+1) 1+B(m,+1)A(m)/\H m,
havior presented in Fig. 2 is generic for a wide range of ‘

parametersom, wmpwe; - - -, Of theresonances and,d of the (32

geometry. If the periodic medium model is used with only

the electric resonance or with an additional plasmonic ternThe generallyq-dependent matriced and B reduce to a

in e(w), it qualitatively reproduces the observed deviationssimple off-diagonal form, with the produd(m,+1)A(m,)
from the expected plain effective medium behavior pub-giagonal,

lished for the array of cut wires and the LHM, respectively.

Although the curves show most of the discussed abnor-
malities in the HEM description of the SRR, the analytic A(mz)=< 0 :U«y(mz)> 33
description matches the simulation and inversion results for = uy(m,) 0 '
the real metamaterial present in literature not in all aspects.
Clearly, there are problems very close to the resonance fre-
quencies. Instead of the divergence in the effective index of -gy(m)
refractionngg being virtually cut off at the upper edge of the B(m,) = o (M) 0o /)
first Brillouin zone as observed in the simulations of the X
actual SRR metamaterial, the analytic description produces a
series of consecutive band gaps at the boundaries of the firstich that the transfer matri82) factorizes, reordering the
and higher Brillouin zones and a lot of structure in the imagi-electromagnetic field vector in the forfi,,Hy,E,,—H,)",
nary part ofngt. The same holds for the analytic description into a twofold degenerated block-diagonal structure

(34)
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(EX Ey ) ( 1 (M) ) the wave representation of the total transfer makgjx of the
Hy — Hy m+1 - g(m+1) 1+g(m,+ 1)My(mz) finite system as

TiotK) = Lo (K ToRo(K). (40)

E. E
X(Hx H ) ' 39
Y XM Then we get the usual definition of the scattering amplitudes
Without loss of generality we can restrict ourself to considerfrom the correspondence between the scattering and the
just the first polarization. We denote the single-polarizatiortransfer matrix given by Eq5).

transfer matrix for thej=0 modes in the last equatidiim,). The homogeneous slaiow we have to consider the total
It is expedient to introduce the decomposition transfer matrix of our meta-materials. The most simple case
is just a homogeneous slab of finite length. On the lattice, the
T(my) = 7,(my + 1) 7,(My) (36)  composition of the total transfer matrix depends on the ma-
terial discretization. We compute the total transfer matrix by
( 1 0)(1 M(mz)) starting from a right e_zigenvector of th_e vacuum base at the
em+1 1/\0 1 (37)  last vacuum siten,=0 just before one side of the sample and

apply successively the single-step transfer matrices,)

Further we can factorize theinto a vacuum and a material until we reach the first siten,=n+1 right of the sample for
contribution, 7,= 7, 7, =T, Ty related to the po- which t_heT(mZ) is a vacuum step again. We hanenaterigl
larization for the magnetic and analog for the electric fieldl@yers inside the sample bot 1 transfer matrix step which
step. Note the renormalized vacuum permittivityg.=iws,  d€Pend on the material parametgrse, of the sample. Since
and permeabilityu,,.=iwuo. As expectedT(m,) is unimo-  We only have to co_nsujer a single pc_xlarlzatlon, we drop in
dular. Now we can easily find the eigensystem; the eigensydD€ following they x indices inu ande in order to improve

tem of the vacuum transfer matrix defines the plain wavd€adability. Because in the discretized Maxwell equations the
basis on the lattice which we use to define the scatterin&lecmc and magnetic fields live on mutual dual lattices, we
formalism. Because of the unimodularity the two eigenval-distinguish three different single st&jm,) inside the sample
ues\=etk are mutually reciprocal and for the propagating instead of only one, as one would expect for a homogeneous
modes we are interested in on the unit circle, ikeis real.  Slab.T(m,) depends onu(m,) and s(m,+1). Therefore the

We get the characteristic polynomiah®-\[2+e(m, first stepT(0) inside the sample sees only the electric re-
+1)y(m)]+1, hence cok=1+e,(m,+1)u,(m,)/2. The two sponses(1) but no magnetic response of the material. The
signs ofk correspond to the right- and left-moving waves. Subsequent steps see bathand 1, and are constant across
Note thate and x implicitly contain thew dependence. To the bulk of the sample. The last step back into the vacuum
obtain the scattering matrix on the lattice we need the wav&€hind the slab is special again. Both steps across the bound-
representation of the total transfer matrix of a unit cell. Thearies of the sample depend on the chosen material discreti-
right and left eigenvectors off(m,) are distinct, R,(m,) ~ Zation. Here we adopt a symmetric material di;cretizéﬁon
:[1'()\_1)/My(mz)]T and L,(m)=[1,(\=1)/e,(m,+1)] T/ which respects the isotropy such that the steps into and out
(\+1)", and satisfy the orthogonality relation of the sample become equal. Then we may calculate the

Ly (MR, (m)=35;. Note that we applied the common nor- wave representation as

malization to the left eigenvectors in order to normalize the s N
electric field component of all right eigenvectors to 1. Thisis  tottK) = LoTeel o] Toms,  Toy o TinyodR0

required for a clean definition of the scattering amplitudes _y + -1 + n +
anqalog to the continuum case. Further, the twogrightpand the = Lo7eme RIL 7RI 7, TvadRo
two left eigenvectors are linearly _mdependent, respecpvely. :[L+T__5vacR0]_l[L+T€T/“R]n[|_+T__8vacR0]Tva {K),
Therefore we may group the two right and the two left eigen-
vectors of the vacuum transfer matrix into the matrices (41)
1 k-1 where{Lg, R} is the eigenbase of the vacuum transfer matrix
ok +1 0 1 iwsg step Tyacuum With the eigenvalues\o=¢e*¥ as before, but
Lo= 1 k_q | (38)  {L*,R} now denotes the eigenbase of the transfer matrix step
0 i 1 e_ 7,7, inside the homogeneous medium with the eigenvalues
er+1 lweg A=€e"9, We made use of the aforementioned identityr,
=T,,+s,- 1N€ Symmetric material discretization introduces the
1 1 averagek=(s+¢,,9)/2 at the material’s surface. As shown
Ro=| -1 ek-1 |, (39 above, the wave vector in the vaculrand inside the ho-

i i mogeneous slah satisfy the dispersion relations 2-2 dos
0 0 +Uyactvac=0 and 2-2cosg+ue=0. Since the matrix

where the eigenvalues=e** satisfy the vacuum dispersion L*7.7,R in Eq.(41) is diagonal, we basically have to calcu-
relation 2-2 co&k+ uyaeyac= 2~ 2 COSK—w?ugeo=0 for the  late the matrixd. *7.—, = Ro. After some algebra we obtain for

vacuum wave vectdk, and use the projectd®L ; to obtain  the homogeneous slab
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Tiot(K) = Teord K M) TyacuunfK) tors \;™ ™™ and A" introduced by the two vacuum slabs
_ . in the bracket on the last line of EG7) do explicitly break
with the diagonallyacuur{k) and the antisymmetry of the off-diagonal elements that is present
Teordk,N) for the single homogeneous slab in the continuum and, in the
symmetric material discretization, also on the lattice, we can

A'G(\) - iG(E) ()\n_ i)[z -G(1)] obtain a repre.sentation of the periodic medium by a homo-
1 AN A" geneous medium only for the casg=n,. As already ex-

¢

1 1 1 ' plained for the continuum case this is not a real restriction
- ()\“— F>[2 -G(1)] - A”G<X> + FG()\) but instead just fixes the definition of the effective bound-
aries of the periodic medium. In the numeric simulation we
(42 have to explicitty compensate the corresponding vacuum
phases in the scattering amplitudes. We can use the Cheby-
shev formula to explicitly calculate th&lth power such
(- that we get the transmission and reflection amplitudes for
~ nea(kja(= k), (43 the periodic medium afteiN unit cells in propagation
direction as

where

GO\ = ha(k) + =

NG\ = NG\

e—¢ No(k) —1
a(k) — vac 0 , g}\nbma
0

2 € Myac

-1
UN—l - UN—Z) '

(48)

(44) t_(w,N) = 7\0<

= (N =AH o= Ag)
- &tyac ’ (N = (N6 = \"M)[2 = G(1) JUp-1t_(,N)
+, - —
with  ak+a(-k)=1 and consequently G(1)=1 NG ™o

- - — (=l = -1

peakja(—k). Further we havea(k)-a(-k)={/(\=A")  \yhere the argument of the Chebyshev polynomialgp) is
and G(\)=G(\™Y)+¢. Note the antisymmetry of the off-

. . . N given by
diagonal elements. Using again the definition of the scatter=

(45)

. (49

ing matrix (5), we find the transmission and reflection am- p = cogqng)cogk(ng +ny)]
plitudes as GO\ +G(\Y
o - f sin(qny)sink(ny+ny)]. (50
o) = S e
™) (™) As for the continuum formulation, we actually get all the

o on information about the metamaterial from the single unit cell.
r(w,n = ()" (\"=N[2-G(D]t-(w,n). (46)  Comparing the scattering amplitudé$8) and (49) on the
The nonvacuum factor of the lattice transfer maté®) ap- lattice with the normalized scattering amplitudes for homo-

pears to have the same symmetries as the transfer matrix §EN€0Us slab in the continuum tells us how to _dl? the phase
the homogeneous slab in the continuum: the off-diagonafOmpensation for the lattice-TMM result$=A,"t- and

. . - = ~(Np=Na) iti i it
terms are antisymmetric, the diagonal terms are mutual con®=XA ° T+ The condition forT arises from the additional
plex conjugates it and u, are real. vacuum stef into the slab on the lattice, the compensation

The periodic mediunKnowing the transfer matrix of the in Rresults from the symmetric definition of the boundary of
finite slab it is now easy to obtain the transfer matrix for athe unit cell which is required to describe the periodic by a
sample of multiple unit cells of the homogeneous as well afiomogeneous medium as explained above.
the periodic medium with the unit cell corresponding to Fig. ~ Continuum HEM inversionAgain we ask whether the
1(a). We can reduce the wave representation of the totaModel periodic medium from Fig. 1 can be represented by an
transfer matrix to a product involving the wave representa&ffective homogeneous medium. Here we have two choices:
tion of the homogeneous core we already know and somé) We can compare the scattering amplitudes of the lattice
additional vacuum transfer matrix stefgfor the free space Periodic medium with the scattering formuleal) and (22)
in the unit cell. We assume the measused, andd in Fig. derived for the homogeneous slab in the continuum or we

1 to correspond ta,, n,, andny layers on the lattice. Then can(ii) compare with thg Iatti_ce sqattering formulae for the

we get for the total transfer matrix df unit cells of the ~homogeneous slab derived in this section. Moreover, we

periodic medium usingr, ,, =7, 7, and, consequently, have to decide which material discretization to use. In this
a"®h a ’ !

=1 b paper we will concentrate on comparing the lattice scattering
Te—eTe—s . .
vac results to the continuum scattering formulas for the homoge-
Tomn(K) = Lg[(ravacrﬂva)"b[rs—m(Tsrﬂ)”d‘lrgrﬂva,-] neous slab, as we_previou;ly did with the standard inversion
. procedure to obtain effectivess(w) and ues(w) from the
X (T 1 TecTina R0 metamaterial simulations.

- No Nag 1IN Analytically, the effective material parameters obtained
[Tvac "0 Teord ki) Tae (K Tvac k) (47) from the HEM inversion for the lattice formulation of the
with the T, K, ng) defined in Eq(42). Since the phase fac- model periodic media used in the last section to emulate the
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N o oy @
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FIG. 3. (Color online) The HEM inversionEgs.(10) and(11)] of the analytic lattice PEM scattering amplitudéxy. (46)] for model
SRR-type material parametess,=0.13, wy,,=0.16 for the magnetic, and.=0.4, we,=0.5 for the electric response ane 104 [see Egs.
(29 and(30)]. The homogeneous core located in the middle of the unit celldsads 10 thick. The retrieved redted, purpleé and imaginary
(green, turquoiseparts of effective parameters are shown as a function of frequendlote the reduction of the multiple band gaps seen
in Fig. 2 around the resonances to a single gap before each resonance. The dashed lines shoyptigl@eahd imaginary(turquoise
parts of the anticipated homogeneous paramékags.(29) and(30)] and corresponding index of refraction and impedance. The dash-dotted
black lines in Ren indicates the upper edge of the Brillouin zomgge=Keqgd k=mar/ (KL).

SRR and LHM metamaterials are shown in Figs. 3 and 4imaginary parts, deformed resonances, bad gaps, and so on,
respectively. As expected, the qualitative behavior is veryare present. The major difference to the continuum formula-
similar to that found with the continuum formulation. All the tion becomes visible around the resonances. Where we pre-
problematic effects seen in the previously published simulaviously found a series of tiny periodicity band gap around
tions, such as resonance-antiresonance coupling, negatittee resonances, in the lattice formulation we obtain a much

1 [ 6
4 “\ n(w) i
- - ‘.'\' 4

z(w)

FIG. 4. (Color online) The HEM inversionEgs.(10) and(11)] of the analytic lattice PEM scattering amplitudésy. (46)] for model
LHM-type material parameters,=0.13, wy,,=0.16 for the magnetic, ana,=0.4, we,=0.5, w,=0.27 for the electric response, and
y=10"[see Eqgs(29) and(31)]. The homogeneous core located in the middle of the unit cellowds/ 10 thick. The retrieved redred,
purple and imaginarygreen, turquoiseparts of effective parameters are shown as a function of frequentie dashed lines show the real
(purple and imaginary(turquoise parts of the anticipated homogeneous paramdtegs. (29) and (31)] and corresponding index of
refraction and impedance. The dash-dotted black lines in;Réndicate the edges of the Brillouin zong,gge=Kedgd k=mar/ (KL).
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TABLE |. Summary of the effective medium related chosen value is reasonable to emulate metals such as Cu, Ag,
acronyms. Au in the range of GHz to a few THz. The rest of the unit
cell is vacuum, there are no dielectric boards. The special
HEM Homogeneous effective medium, a homogeneous geometry of the unit cell has been carefully chosen to pre-
medium characterized by(w) ande(w) which, serve the inversion symmetry of the unit cell in the two
substituted for a finite metamaterial slab, length-  directions perpendicular to the direction of propagation. This
independently reproducésr approximatesthe allows us to consider the scattering for only one polarization

given scattering amplitudes.Here always used in  as jt avoids complications by cross-polarization terms in the
continuum formulation. Finding a HEM for given  gcattering amplitude®. In this paper, we concentrate our

T.Ris called HEM inversiorif exac or HEM consideration on the region around the magnetic resonance

approximation. frequencyw,,, where we expedi.«(w) to become transition-
PEM Periodic effective medium, a most simple periodic |ly negative, for two reasons: first this is the region of in-

model-medium defined bytcord ®),ecord ) and terest for any left-handed application, and second, this is the

a geometry shown in Fig. 1 which length-
independently reproducder approximatesgiven
scattering amplitudes. Also used a priori with
given peord ®),ecord @) to demonstrate effects of
the periodicity. Here used in lattice formulation.

HEM(PEM) The HEM which reproduces the scattering
amplitudes calculated analytically from a given
PEM.

frequency window for which simulation data is typically
shown in the literature. A more detailed investigation of the
higher frequency region, particularly the vicinity of the elec-
tric cut-wire response of the SRR and the intermediate peri-
odicity band gaps will be published elsewhere.

In the following we show HEM inversion results for the
scattering data numerically obtained for the metamaterial
with the TMM. After the correct vacuum-phase compensa-
tion described above the inverted HEM scattering formulas

simpler structure with basically one gap before each reso(-lo) and (11) are applied to the simulated and R for

nance. This is in excellent agreement with the numerica[ﬂetamaterial slabs with a thickness of one, two, and three
' g unit cell in propagation direction. We shall denote the

simulations, hence, expectedly, the lattice formulation COM- . its asn () and zugy(w) or ez and
pares much better to numerical simulations also obtained via > HEM® HEM @) FHEM™THEMAHEM ©
discretization of the Maxwell equations than the continuum®HEM=NHen/ Ziew, correspondingly. This approach is the
formulation. The discussion of further details we shall defer’2M€ as. chosen in the literature. Then we fmt_j the PEM_ap—
to a dedicated section below. proxmapon for the 3|mulqted metamaterlal using the lattice
formulation for the analytic scattering formula of a model
periodic medium consisting of a homogeneous core which is
a single discretization mesh-step thick and located the unit
cell in the plain of the SRR gaps and the LHM continuous
In this section we now present actual TMM simulation wire. This constitutes the lattice equivalent of a single scat-
results for real SRR and off-plane LHM metamateriedse  tering plain in the continuum. A model periodic medium,
Table ). All numerical simulation are done using an imple- characterized by effective material constants) and e(w)
mentation of the TMM method described by Marko$ andof the homogeneous core, which reproduces the simulated
Soukoulist? The metamaterials are uniformly discretized onandR independent on the system length is called a periodic
a cubic lattice using a symmetric material discretization. Theeffective medium. The numeric inversion of the lattice scat-
dimensions of the unit cell are>610x 10 mesh steps, the tering formulas(48) and (49) is applied to the simulated
single-ring SRR is a square ring ofX77 mesh steps with a andR for the first unit cell of each metamaterial, providing
gap in the top side one mesh step wide. Propagation is for alls with effective material constantgqd @) andeqyd @) for
cases along the SRR plane with the polarization of the incithe homogeneous core of the PEM approximation. From the
dent plain wave such that the electric field is parallel to thecore parameters we can derive two further sets of effective
two continuous sides of the SRR. Therefore we have onlparameters. First, we calculate the HEM inversion of the
magnetic coupling to the magnetic resonance of the 8®R. PEM scattering data obtained from the retrieyeg.{ ») and
Periodic boundary conditions apply to both directions per-.,{®) and compare the results with the HEM inversion of
pendicular to the direction of propagation. For the off-planethe direct simulation data to assess the quality of the PEM
LHM we add a one mesh-step thick continuous wire in frontapproximation. We denote this as HEREM). Second, we
of the SRR such that the position of the wire is symmetric inintroduce the material parametgsgy(w) andepgy(w) of a
the middle between two periodic repetitions of the SRRhomogeneous unit cell that would correspond to the PEM
plane and centered with respect to the gap in the SRR. Thgpproximation in the effective medium limit, equating the
direction of the wire is parallel to the continuous sides of thetotal electric and magnetic polarizations of the respective
SRR, thus parallel to the incident electric field. All compo- ynit cells
nents of the metamaterials, the ring of the SRR and the con-
tinuous wire, are made from metal characterized by a con- Ny
stant relative permittivity ofeqe=(-3.0+5.88)10° and mpem(@) =1+ N, + Ny + nb['“COfe(w) -1] (51)
Mmeta= 1. Note that the results do not depend muchegg
as long as it does not fall below a certain thresHéldhe  and

IV. SIMULATION RESULTS
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5 ' 5
. H Re n(w) . Im n(w)
3 ,"l 3 FIG. 5. (Color online) For the
By v simulated SRR metamaterial the
2 /J\S """""""""""""" _ 2 . effective index of refraction
1 1 - Nesi(w) and impedance,.g(w) are
//-_ ""~---__\ shown. The colored curves repre-
0.1z | 0.12 0.6 0.18 0.12 .16 0.18 sent the HEM approximation
-1 -1 [Egs.(10) and(11)] of the simula-
tion data for the first three unit
5 5 ceIIs,( the)solid black line the
i HEM(PEM) approximation, and
4 ' Re 2(w) 4 Im z(w) the dashed line the PEM approxi-
3 ; 5 ] mation [see Egs.(51) and (52)]
'." 3 obtained from the first unit cell
2 / 2 ".‘ data. Note the different positions
. ___4___./' L of the resonance fong(w) and
| L e e Zeti( ).
0.12 0.14 0.16 0.18 .12 0.14 0.16 0.18
-1 -1
Ny since the retrievethygy(w) and zygy(w) mutually disagree
epem(w) =1 + Nt nb[8core(w) -1]. (52 upon the value. We show that the HEM approximation of the

metamaterial is, apart from some additional noise for longer
The idea of this definition is to obtain parameters which wesystems, indeed length independent. Although we only show
can compare with those of the HEM inversion, becomingdata for the first three unit cells we confirmed the length
equivalent with the latter if we can truly neglect the period-independence for all system lengths up to 11 unit cells. The
icity of the material. This allows us, to some degree, to condash-dotted line in Fig. (8 indicates the upper edge of
sider the metamaterial's electromagnetic response as beirige first Brillouin zone,negge=kKeagd k=7/(kL), wherelL is
composed of an actual contribution of the internal geometrjhe length of the unit cell in propagation direction. Clearly

of the metamaterials constituents and an explicit contributioihe cutoff of Ren,ey(w) coincides with this line. Note also
of the periodic arrangement. that the peaks izygw(w) appear exactly when Regygy(w)
reachesngqgd ). This behavior is generic, qualitatively the

same is observed for different sizes of the unit cell and dif-
) ) ] _ ferent geometries of the SRR, including single-ring and
From the naive effective m_edlum picture we expect thedouble-ring SRRs as well as more symmetric multigap
SRR to expose at the magnetic resonance .brought about BRRs22 The corresponding effective permittivity and perme-
the LC-oscillator-type response of the split ring to a perpenapbility of the HEM approximation are shown in Fig. 6.
Qicular external mggnetic field a Lorentz-type resonant form Again, the colored points represent the simulation data
in the permeability uer(w) but an unaffected, weakly for gne to three unit cells. The most striking deviation from
frequency-dependent permittivitgen(w). If the magnetic  the expected effective medium behavior is the resonance-
resonance is strong enough, i.e., the imaginary pagt is  antiresonance  coupling between Rgy(w) and
small, we should find an isolated region where Rg(w)  Reeg,zy(w), accompanied by a significant negative imagi-
<0. The HEM apprqximation of the actuallsimulation data iSnary part of the permittivity, Ing,zy(w) < 0. Moreover, the
shown as effective impedanegey(w) and index of refrac-  pegative region of the. resonance is strongly but character-
tion nuem(w) in Fig. 5 as the colored points. The different jstically deformed and not ascending monotonically from a
colors(orange, yellow, gregrcorrespond to different lengths negative divergency. Of course, the divergencies of the ef-
of the metamaterial of one, two, and three unit cells in propafective parameters would be blurred in the presence of large
gation direction. We see the typical behavior aroungdwe  imaginary parts inu or &, but at least for our simulations
are already familiar with from previous wofR.Instead of using almost perfect metals in vacuum we would expect rea-
the expected form, we obtain a sharp cutoff infRey(w)  sonably sharp divergencies. As a consequence of the length
on the low-frequency side, accompanied by a nonzeréndependence ofngg, and zyey also the retrieved
Im nuem(w). The adjacent region with Rgyey~0 and sig-  Re uyey(w) and Respey(w) are basically length indepen-
nificant Imnygy >0 should correspond to the negatiye  dent.
produced by the magnetic resonance. Even more disturbing In the analytic sections above we demonstrated that the
is the fact that the peaks mygy(w) which should coincide periodicity can produce all that kind of effects violating the
with the peaks innygy(w) directly at the resonance fre- effective medium picture in our simulations. Now we show
guencywy, do appear at substantially lower frequency. Thisthat the PEM approximation of the simulation data yields
behavior makes it hard to determing, for the metamaterial reasonable effective parameters free of the above artifacts.

A. SRR
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Re e(w) Im &(w) FIG. 6. (Color online) For the
10 10 simulated SRR metamaterial the
effective permittivity eq(w) and
5 5 permeability ue(w) are shown.
The colored curves represent the
N - HEM approximation [see Egs.
. (10) and (11)] of the simulation
data for the first three unit cells,
the solid black line the
HEM(PEM) approximation, and
the dashed line the PEM approxi-
mation [Egs. (51) and (52)] ob-
tained from the first unit cell data.
Note the antiresonant behavior of
the permittivity and the misshapen
magnetic resonance in the fre-
quency interval where ngg(w)
reaches the edge of the Brillouin
-5 zone.

r
f
!
10 ; 10
i
1

The dashed curves in Figs. 5 and 6 represent the effectiv@ SRR with five times lowetw,, The size of the SRR and the
parametersupgm(®) and eppp(w), with the corresponding unit cell are kept constant. To lower the resonance frequency
npem(w) and zpey(w), extracted from the PEM approxima- of a SRR without changing the size one would usually de-
tion of the simulation data as described above. For the PEMrease the width of the gap in the SRR increasing its capaci-
unit cell we chose,=5, ng=1, andn,=4 to fit the symmetry tance. Due to the limitations of the used TMM implementa-
of the metamaterials unit cell that embeds the X7 SRR tion (uniform discretizationthis was not feasible. Therefore
into a 6xX 10X 10 unit cell. From the corresponding.,d ) we adopted the alternative possibility to place some high
and e d @) We can in turn calculate the scattering ampli- dielectric constant material inside the SRR gap, which serves
tudes of the PEM and subject those to the HEM inversionthe same purpose and can be used to emulate a narrower gap.
The resulting HEMPEM) parameters are shown as the solid For this low-frequency SRR the wavelength to unit cell size
black lines which virtually coincide with the first unit cells ratio aroundwy, is roughly 25, higher than in any published
simulated HEM parameters, hence basically also with thoseHM. The behavior of the retrieved effectivggy(w) and
of the longer systems, proving that the PEM approximatioreggy(w) in Fig. 7 is now qualitatively as expected from the
is reliable. Obviously the PEM parameters behave exactly asffective medium picture, the refractive index and impedance
we expected from the effective medium picture in the firstof the HEM approximation virtually coincide with the PEM
place. There is a clean resonancegg,(w) and the peaks of parametersipgy(w) andzegy(w). As the magnetic resonance
Npem(®) andzeg(w) Now appear at the same frequency, ren-is now shifted far below the edge of the Brillouin zone there
dering w,, well defined. There is no resonance-antiresonanceé no visible cutoff in Ren,gy(w) and the resonance peaks in
coupling betweerupgy(w) and epey(w) anymore. The per- n andz appear at the same frequensy,. Note thatuygy(w)
mittivity is roughly constant across,, and does not show reaches unity away from,, to either side. Also the effective
any negative imaginary part. The permeabilitye\(w) ex-  permeabilities of HEM and PEM in Fig. 8 do coincide, ex-
poses a clear, antisymmetric resonancegin its real part  posing a clean antisymmetric resonance ingR&nd a sym-
in conjunction with a symmetric absorption peak in themetric positive absorption peak in I Surprisingly, though
imaginary part at the same frequency. Note further that theveak there is still a noticeable residue of the resonance-
frequencywn,, where Reuyew(w) get back to positive val-  antiresonance coupling left in Rgegy(w) together with the
ues after the magnetic resonance is substantially smaller thaxorresponding negative imaginary part. Only here the HEM
the corresponding frequency for Regy(w). The procedure approximation deviates from the PEM approximation which
yields analogue results for different SRR geometries and difexpectedly does not show these effects. All effective param-
ferent size of the unit cellnot shown. eters are almost perfectly length independent. This has been
Effective medium behavior was expected in the first placeverified for up to 10 unit cells in propagation directiGmot
because the vacuum wavelength of the incident radiation athowr). Note also the absence of the additional noise ob-
the magnetic resonance frequensy, is large compared to served in the effective parameters for longer systems. These
the size of the unit cell for the customary LH and relatedresults show that the artifacts in the HEM approximation
metamaterials. In most experiments and simulations this rawhich we identified as effects of the metamaterial’s period-
tio is in the range of ten to five:10.1322.23.28.37-3} the SRR icity vanish if we approach the effective medium limit. At
metamaterial presented above we went intensionally to thiow frequencies HEM and PEM approximation converge,
lower extreme to make the effects of the periodicity morehowever, even in this extreme low-frequency limit remains
pronounced and more easy to identify. In Figs. 7 and 8 wef the periodicity artifacts are still visible. Since for virtually
present the analog HEM and PEM approximation results foall the metamaterials measured or simulated that have been
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\\
\.

Ren(w) Im n(w) FIG. 7. (Color online) For the
simulated low-frequency SRR
metamaterial the effective index
of refraction ng¢(w) and imped-
ance zg(w) are shown. The col-
ored curves represent the HEM
approximation [Egs. (100 and
(11)] of the simulation data for the

0.02 0.03 0.04 0.05 0.02 0.03 0.04 0.05 first three unit cells, the solid
black line the HEMPEM) ap-
proximation, and the dashed line

Im z(w) the PEM approximatiofsee. Egs.
(51) and (52)] obtained from the
first unit cell data. Note that far
away from the edge of the Bril-
louin zone HEM and PEM ap-
proximation, and the expected ho-

— mogeneous medium  behavior

coincide.

N W ooy N
N W os ooy N

published the wavelength to unit cell size ratio is worse tharthe LHM in propagation direction is shown in Fig. 9 as the
25, we expect the metamaterial's periodicity required to becolored points. In violation of the assumed effective medium
taken into account. picture we find again a cutoff of the negative resonant
Renyev(w) this time at the lower edge of the first Brillouin
ZONEe Nggge= ~Kedgd K=—m/(KL), whereL is the length of the
B. LHM unit cell in propagation direction. The imaginary part rof
The most simple way to obtain a left-handed material is todoes not have the expected form eitherzlgy(w) we ex-
add an appropriately dimensiorf€d° continuous wire to the pect two peaks for the LHM, one af, and another one at
SRR considered above. From the naive effective mediunthe electric (effective plasma frequency; which is the
picture we expect for the LHM a Lorentz-type resonance inlowest frequency where(w) becomes positive. Though the
w in combination with a plasmonic form, modified by the retrievedz,gy(w) does show two such peaks, the position of
electric cut-wire response of the SRR where neces8ary,the first one associated with,, does not agree with the,,
which is essentially negative around the magnetic resonanaderived fromnygy(w). This is the same issue as found for
frequencyw,,. The effective impedance and index of refrac-the SRR above. The corresponding effective permeability
tion of the HEM approximation for the first three unit cells of wyepm(w) and permittivityepgy(w) are shown in Fig. 10. The

25 - Re () o.ozY 0.03 _ 0.04  0.05 .
~ -0.5 _ FIG. 8. (Color online) For the
2 -1 simulated low-frequency SRR
15 s Im e(w) metamaterial the effective permit-
. ’ tivity ee(w) and permeability
-2 teii(w) are shown. The colored
0.5 -2.5 curves represent the HEM ap-
-3 proximation [see. Egs.(10) and
0.02 0.03  0.04  0.05 (11)] of the simulation data for the
first three unit cells, the solid
black line the HEMPEM) ap-
20 proximation, and the dashed line
10 Re p(w) Im p(w) the PEM approximatiofEgs.(51)
15 and (52)] obtained from the first
5 } unit cell data. In the low-
| 10 frequency limit the resonance/
0.02}/ 0.03 0.04 0.05 antiresonance coupling as well as
s ( 5 the negative imaginary parts
disappear.
10 A
0.02 0.03 0.04 0.05
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1 10 Im n(w)

0.08 b'l.'l 0.12

FIG. 9. (Color online) For the
simulated off-plane LHM
metamaterial the effective index
of refraction ng(w) and imped-
ance zg(w) are shown. The col-
ored curves represent the HEM
approximation [Egs. (100 and
(11)] of the simulation data for the
Re z(w) Im 2z(w) first three unit cells, the solid
2 black line the HEMPEM) ap-
proximation, and the dashed line
the PEM approximatiofsee. Eqgs.
(51) and (52)] obtained from the
first unit cell data.
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previously published resonance-antiresonance coupling ithe plasma resonance of the continuous wire. Note again the
the real parts aroundy, is clearly visible, together with the shift in wy,, while the electric plasma frequenay is essen-
appearance of the negative imaginary part in the permittivitytially the same for HEM and PEM approximation, although
and the misshapen absorption peak in the permeability. Alsthe descent to negative values for decreasing frequency is
for the LHM we can now confirm the length independence ofmore rapid forepgy(w). Also for the LHM these results are
the HEM approximation, apart from some additional noise generic, i.e., have been qualitatively reproduced for different
up to 10 unit cells in propagation direction. As for the SRRsizes of the SRR and continuous wire components of the
the PEM approximation of the LHM vyields effective param- LHM and the unit cell.

eters free of all the artifacts seen in the HEM parameter
which demonstrates again their origin in the periodic struc-
ture of the metamaterial. Inpgy(w) and zpgy(w) we obtain

an untruncated magnetic resonance and agreemerdrd z Not only the behavior of the SRR based metamaterials
upon the position ofo,,. The permittivity epgy(w) and per-  around the magnetic resonance but also that of the periodic
meability upem(w) show a clean magnetic resonance with aarrangement of continuous wires or cutwires are strongly af-
symmetric absorption peak and the anticipated electric pladected by the periodicity. In the effective medium picture, the
monic behavior without any negative imaginary parts. Incontinuous wire is expected to expose a simple plasmonic
epem(w) We can even recognize the beginning ascent of thepermittivity going monotonously from negative to positive
imaginary part to the absorption peakast O contributed by  real part and crossing zero at a single plasma frequency

C. Continuous wire and cut wire

Im e(w)

0.08 .p.1 /12 0.14 0.16 0.18 FIG. 10. (Color online) For
V the simulated off-plane LHM
metamaterial the effective permit-
tivity eeq(w) and permeability
-10 uei(w) are shown. The colored
curves represent the HEM ap-
proximation [see. Eqgs.(10) and
(11)] of the simulation data for the
Re p(w) Im p(w) first three unit cells, the solid
10 black line the HEMPEM) ap-
- proximation, and the dashed line
-14 0.16 0.18 5 the PEM approximatiofEgs. (51)
and (52)] obtained from the first
unit cell data.

Re g(w)

o
o
©

ol =4

N
Hy
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0.08 0.1 0..: 0.14 0.16 0.18
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3. \ 3
] Ren(w) 2.5
2 F 2
i FIG. 11. (Color online) For
1.5¢ 1.5 the simulated continuous wire
1 1 metamaterial the effective index
0.5 0.5 of refraction ng(w) and imped-
Y ance zg(w) are shown. The col-
0. 0.1 0.2 0.3 0.4 0.5 0.6 ored curves represent the HEM
approximation [Egs. (10) and
(11)] of the simulation data for the
20 ; . .
Re z(w) 10 Im 2(w) first three unit cells, the solid
15 black line the HEMPEM) ap-
5 proximation, and the dashed line
the PEM approximatiofisee Egs.
10 A , (51) and (52)] obtained from the
] TP -0k 0.5 0.6 first unit cell data.
] R - el o
0.1 0.2 0.3 0.4 0.5 0.6 [

In the HEM approximation of simulated continuous wire boards. Using the PEM approximation of the simulation data
metamateriald,e.g., the isolated continuous wire array from we can describe the scattering amplitudes in terms of a
the LHM discussed above, we observe the anticipated plagpgy(w) which does possess just the expected plasmonic
monic behavior only at low frequencies up to the order of theform in conjunction with an almost exactlypgy(w)=1. The
plasma frequencyo, of the wire. At higher frequency we plasma frequency imyey(w), however, does not coincide
find a sequence of additional stop bands which can be exXyith the “lowest” w, of the HEM approximation but appears
plained as periodicity band gaps in the framework of themoderately shifted to higher frequency. The HEM and PEM
PEM model: whenever the residue classriR@)mod 27/k  approximation for a metamaterial comprising a periodic ar-
comes close to the edge of the first Brillouin zone a periodray of continuous thin wires parallel to the electric field of
icity band gap is opened where a representative othe incident electromagnetic wave is shown in Figs. 11 and
Renyem(w) follows the linengggd w) and Imnygy(w) is sig- 12, Both effective material approximations are virtually in-
nificantly nonzero. At the boundaries of each of these bandlependent on the system length.

gaps the real and the imaginary part of the effective imped- The periodic array of cut wires is of interest for two rea-
ancezyey(w) have either a zero or a pole which leads to thesons: first, it can be used as a model of the electric response
appearance of an alternating sequence of phony resonanad-the SRR and second, we could substitute the continuous
like structures inupem(w) and eyem(w). The corresponding  wire in the LHM to tailor the collective.¢(w) or to simplify
series of transmission above the “first, have also been its mechanical construction. For a sufficiently low resonance
confirmed in experiment§with thin metallic wires on PCB  frequencyw, the cut wire shows a behavior analogous to the

6 6f[} Ime(w)
4 4
) Stk FIG. 12. (Color online) For
i the simulated continuous wire
01 02 03 - N metamaterial the effective permit-
-2 2 tivity ee(w) and permeability

Uei(w) are shown. The colored
curves represent the HEM ap-
proximation [see Egs.(10) and
(11)] of the simulation data for the
6! Rep(w) 6 Im p(w) first three unit cells, the solid
black line the HEMPEM) ap-
proximation, and the dashed line
2 2 the PEM approximatiofiEgs.(51)
and (52)] obtained from the first

0.1 0.2 0.3/%/0'.'5 0.6 7 0.1 0.2 0.3 0.4 0.5 -0.6 unit cell data.
-2 ' -2 :
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Tm n(w) FIG. 13. (Color online) For

the simulated cut-wire metamate-
rial the effective index of refrac-
tion neg(w) and impedance.q(w)
are shown. The colored curves
represent the HEM approximation
[Egs.(10) and(11)] of the simula-
tion data for the first three unit
1 . : . . cells, the solid black line the
HEM(PEM) approximation, and
the dashed line the PEM approxi-

mation [see Eqgs.(51) and (52)]

Re z(w) o .25 obtained from the first unit cell
. data. The weak additional struc-
ture in the PEM approximation
close to the resonance is indicat-
ing the beginning breakdown of
the approximation of the metama-
terial within our most simple peri-
odic medium model.

H N W ok 0 oo
PN W s 0o

H N W b ooy

-1 =7

SRR but with the electric and magnetic parameters exparallel to the electric field of the incident electromagnetic

changed. We obser¥all the previously described artifacts wave is shown in Figs. 13 and 14. In either case, the effec-
in the HEM approximation: the resonance-antiresonancéive parameters obtained from the PEM approximation basi-
coupling, where théelectrig resonance appears this time in cally do not show any artifacts around the cut-wire resonance
euem(w), accompanied by a negative imaginary part innor the periodicity band gaps and behave very much as ex-
uaem(w), the cutoff of nygw(w) at the Brillouin zone edge, pected from the naive effective medium picture. This gives

and so on. However, since in real metamaterials the cut-wirgs a criterion to distinguish the real cut-wire resonance in a
resonance usually appears at much higher frequency, we obietamaterial from the possible phony one brought about by
serve an additional periodicity band gap at lower frequencythe periodicity.
well separated from the cut-wire response, qualitatively as

shown in Fig. 3. The effective parametetggm(w) and

euem(w) at the lower boundary of this additional band gap

will appear very similar to those of a cut-wire resonance at When Veselago conceived the idea of heft-handed electro-
low frequencyw,. Note that we can shift the cut-wire reso- magnetic material he essentially considered theoretical ho-
nance to arbitrarily low frequency by reducing the gap in themogeneous media for which there are no correspondents in
longitudinal direction of the cut-wires, i.e., making the finite nature. Though there are materials exposing a negative mag-
wires almost as long as the width of the unit cell. The HEMnetic response and other materials with a negative electric
and PEM approximation for such a metamaterial of cut wiregesponse, the challenge is to obtain both simultaneously in a

V. DISCUSSION

Re g(w) Im e(w)

20

10 FIG. 14. (Color online) For

the simulated cut-wire metamate-
0.2 T rial the effective permittivity
geff(w) and permeability e w)
are shown. The colored curves
represent the HEM approximation
[see Eqgs.(10) and (11)] of the
simulation data for the first three
ff Ber@ . Tm p(w) unit cells, the solid black line the
HEM(PEM) approximation, and
2 2 the dashed line the PEM approxi-
. mation [Egs. (51) and (52)] ob-
———ali [Egs. (51) and (52)]

s 0_17. 53 T - tained from the first unit cell data.

.‘m"" 0.25

-10 -10

0.2 0.25
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material and, moreover, at an experimentally useful freHowever, whenever there is a resonance inuRee simul-
quency in or above the microwave range. After Pendry protaneously observe an antiresonant behavior ire,Rad vice
posed the first practical possibility to obtain controllableversa. The antiresonant structures in the real part are accom-
resonant magnetic and plasmonic negative electric responganied by a negative imaginary pafi.) Misshapen, trun-
by the means of the geometric shape of electric conductorsated resonances. The divergence innRmpears to be cut
(SRR and continuous wiyen a periodic arrangement, nu- off at the edges of the first Brillouin zone and, in particular,
merical simulations have been conducted, attempting tthe negative regions of the magnetic resonance.iand
verify the simultaneous negative magnetic and electric reeut-wire resonance im do not return from large negative
sponse. Note that because of the technical difficulty to obtaimeal part but seem to saturate in a rather shallow behavior.
reliable complex reflection amplitudes from experimentalThe corresponding absorption peak in the imaginary parts as
measurements numerical simulations are here the most inmisshapen and highly asymmetric tdoi) Discrepancy be-
portant tool to address the question of negative electromagweenn and z about the positions of the resonances. We
netic response. The existence of negative refraction, which iexpect the peak&r zeros in the index of refraction and the
merely a consequence of an antiparallel phase and groumpedance to appear exactly at the resonance frequengies
velocity, has been demonstrated experimentally but provideandw,, or the effective plasma frequenq&. From the simu-
no proof for the actual Veselago picture of simultaneouslylations, however, we find different frequencies frorandz,
negativex ande. For this purpose, at typical vacuum wave- respectively. This led for instance to an “internal structure”
lengths of around ten times the size of the unit cell effectiveof the magnetic resonance as shown in Fig. 5, which can not
medium behavior of the metamaterials has been assumegsily be explained within the assumed effective medium
throughout the literature such that an effective permeabilitypicture. (iv) Additional spectral structures. Apart from struc-
and permittivity could be obtained in a HEM approximation. tures around the anticipated contributions of the metamateri-
Although the working frequency of a SRR-based LHM is al's constituentswy, e, and ) we observe a lot of addi-
theoretically arbitrary, the fabrication technique in experi-tional structure, especially at higher frequency, which can not
ments and the limited computer power in numerical simulahe accounted for. The observed artifacts in the HEM approxi-
tions impose certain constraints on the size of the smalleshations are quite generic and have meanwhile been reported
structures(particularly the width of the gap in the SRR by different groups. An explanation for all these effects is
comparison to the size of the unit cell. As a consequence thgiven by the periodicity, see below.
ratio of the vacuum wavelength around the magnetic reso- The occurrence of negative imaginary parts the permittiv-
nance to the size of the unit cell is confined as well. ity or permeability has been criticized by several
Continuum HEM approximatioriThe effective refractive authors?4-26Indeed, a physical, passive homogeneous mate-
index nygm(w), impedance gy (w) and, derived from those,  rial may not possess any negative imaginaryiande. As
permeability uyem(w) and permittivity eyem(w) published  long as the material is passive, it can only absorb energy
by ug®142023and otherd!®2-2%or the LHM, SRR, and cut- from the electromagnetic field. If there was any negative
wire metamaterials do only in first approximation meet theimaginary part inu or e one could devise a geometry of this
anticipated effective response of the material. For the considnaterial which would violate the passivity. This requirement
ered polarization(electric field parallel to the continuous does not apply to the HEM approximation. Tefectivema-
wire and perpendicular to the gap bearing side of the SRRterial is defined as the homogeneous material which repro-
and direction of propagation in the SRR plane the resonarduces the scattering amplitudes of the metamaterial within
circulating currents inside the SRR ring should couple andhe given geometry, i.e., normal incidence to a homogeneous
respond only to the magnetic field, affecting the behavior oklab of finite length in propagation direction, if a length in-
the effectiveu(w). The electric field couples to the continu- dependent solution does exist. Our retrieved HEM param-
ous wire or cut wire. However, it also couples to a separateters provide such a length independent description of the
electric resonance of the SRR caused by induced polarizaticexctual scattering amplitudes of the metamaterial. Fo(dte
currents oscillating linearly in the gapless sides of the SRRionary) scattering of plain waves at a finite homogeneous
which are parallel to the electric field. For other orientations,slab in the continuum there ageande with negative imagi-
due to the anisotropy arising from the gap in the SRR ringnary parts which do not violate the passivity of the material,
the electric field may also couple to the resonance of th@as Ilong as much weaker conditions Urime
circulating currents making the total effective behavior a lot=00Im wu/|u|+Ime/|e|=0 are satisfied. If we further re-
more complicated. In some cases violating the inversiorstrict the scattering setup requiring the thickness of slab to be
symmetry of the unit cell also a magnetic coupling to thean integral multiple of the unit cell, which is reasonable for
electric cut-wire response is possible. Though we obtairthis type of metamaterial, we have even more freedom in
from the simulations a resonant magnefinagnetic reso- ande. The HEM approximation is only valid for a given
nance frequencw,, for SRR, LHM) and electric(cut-wire  geometry, there is not necessarily a physical material expos-
resonance frequenay, for SRR, cut wirg response as well ing the same material parameters in an arbitrary setup.
as basically the plasmonic response of the continuous wire Some author€ have suggested a more general effective
and its corresponding contribution in the LHM, the corre-descriptiort® of the metamaterials which employ tensorial
spondence to the effective medium picture is spoiled byand e to take the coupling of the electric field to, and the
partially very significant anomalies.(i) Resonance- anisotropy of the SRR into account. Though this is certainly
antiresonance coupling. We expect the electric and magnetan issue for arbitrary orientation of the SRR and will gain
response of the discussed metamaterials to be independeimportance in more-dimensional materials, it is not directly
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related to the deviations from the effective medium behavioduced by the periodicity, analogously to, for instance, the
discussed above. band structure in a crystal. In our case, the only substantial
Apart from some additional “noise,” we could confirm the difference is the explicit frequency dependence of the micro-
length independence of the HEM approximation for all con-scopic material properties, i.e., the resonant formg.@b)
sidered metamaterials up to 11 unit cells in propagation diande(w) for the homogeneous core of the periodic medium
rection. In contrast to previous work this became possible bynodel's unit cell. These periodicity band gaps are distinct
the introduction of an explicitly isotropic material discretiza- from the intrinsic band gaps which arise directly from the
tion in the TMM and the use of a carefully chosen symmetrynegative produckw in the emulated response of the con-
of the unit cell to avoid the occurrence of cross-polarizationstituents. To illustrate the behavior in the periodicity band
scattering amplitude¥. In the presence of cross-polarization gaps we assume for the momeriw) ande(w) of the core to
terms the second polarization can contriBlite theT andR  pe real. Them(w) andz(w) in Eq. (23) are simultaneously
of the considered polarization, e.g., the transmissjgr 1 gijther real or imaginary and consequently the right-hand side
for the passive polarization of the SRR which has the MaYIRHS) of Eq. (23) is real as well. A periodicity band gap
netic field in-plane and the electric field parallel to the 9aP-gccurs whenever the RHS grows outside the domain
I_ess S'fder? C%nREUt.Oﬁ rt]he transgnls(sjlon Il\ln TfNiit“{[ﬁ_gtmanzaf—l,l] of the cosine for a real argument: For the principal
tlon watliC(T’l shoullg (t:ieias)‘/togxp?:er%iléll 3/ W|1tlh ,[1hzezzsyzétembranch‘,15 Nert Acquires a nonzero imaginary part inside the
length. This effect can cause a phony length dependence F¢P and R w) retains the value of zero ar/ (kL) for all
the HEM approximation which is diagonal in the polariza- HS of Eq.(zg) above 1.or below =1, respectively. Adding
tions. a small imaginary part inu(w) and e(w) of the core, as
Another issue we have to address is the vacuum waveshould be a good approximation for the emulated metamate-
length to unit cell size ratio. In the present paper we have fial if we do not come too close to the resonan@ssorption
(unit cell), 5 (SRR, 25 (low frequency SRR a typical value  peaks$, adds a small imaginary part ta(w) and causes
for the metamaterials found in the literaturestd0 or worse. Rengs(w) to deviate slightly from 0 orw/(kL) towards
Strictly speaking we can expect effective medium behaviorr/(2kL) inside the periodicity band gap. Having thus estab-
only in the w— 0 limit. As an approximation, it may hold if |ished the confinement of the effective index of refraction,
the wavelength inside the structure is large compared WitlRen«(w), to the edgés) of the fist Brillouin zone or to zero,
the typical length scale of the metamaterial provided by thgne coupling of. ande follows as a direct consequen®en
size of the unit cell. Two points are important here: Thesimple words: Ifn?=¢p is confined and either one afu
relevant wavelength is the wavelength inside the S”“Ctur%xposes resonant behavior the other has to go to zero simul-
and can be much smaller than the corresponding Vacuu'@meously. This also explains why the resonance-
wavelength if we approach the resonancesgaind e and antiresonance coupling and the negative imaginary parts oc-

#?aectrig%ggggg?ng; tg? reealsggcr)tngf tx: ﬁgﬁﬁg\{ekr';der)i( o?if "€ cur only across the periodicity band gaps associated with the
ge- ' w gsonances but not outside. For the general case this qualita-

how large the above ratio has to be to reach a reasonab[ behavior | licated by th . . ;
effective medium behavior. Our simulations support both'V€ PENAVIOr IS compiicated by theé nonzero imaginary parts.
Note again that we can obtain the real part of the index of

points as the deviations from the expected behavior happen : X
essentially when the wave vector inside the structurdeffaction only as a residue class Rg(w) mod 2/ (kL)

g=n(w)k becomes comparable with the edge of the BrillouinWhich becomes immediately clear either from the length in-
zone, i.e., the wavelength comparable to the unit cell sizedlependence of the HEM approximation of the PEM accord-
for the low-frequency SRR we find pretty good effective ing to Egs.(19) and (20) or from the argument about the
medium behavior without the aforementioned anomaliesimultaneous congruences for different system lengths dis-
apart from a small region around the resonance. The simulagussed in Sec. Il. Therefore the pieces ofriggy(w) that
tions indicate that to obtain a reasonable effective mediunfollow the multiples of the first Brillouin zone’s edge just
behavior the wavelength to unit cell size ratio has to be oftoincide with either zero or the first Brillouin zone’s edge
the order of 30. The less losses occur in the resonances tliepper and lower are equivalgritself.
larger the peak im, and consequently the required wave- Another important observation is that a periodicity band
length to unit cell size ratio will be. gap may occur in between the magnetic resonangend
Continuum PEM modelThe analytic HEM approxima- the cut-wire resonance.. Unfortunately, the corresponding
tion of the periodic medium model proves that the observecffective ¢ looks similar to an electric resonance with the
deviations from the anticipated effective medium behavior inattendant antiresonant structurednThis may easily be mis-
the HEM approximation of the real simulated metamaterialgaken as the cut-wire resonance which would be expected to
can be caused by the periodicity or, more precisely, the refollow the magnetic resonance as the next feature in the fre-
duced translational symmetry to the discrete group generateglency spectrum. Only in the low-frequency limit the latter
by the unit cell. In particular, the model shows that thosebehavior is actually observed. Note that the parameter depen-
artifacts are not related to the actual geometric definition oflence of the phony electric resonance frequency at the lower
the SRR and LHM resonances since the homogeneous coeglge of the periodicity band gap will qualitatively resemble
in the model just uses the resonant formsu6f) ande(w)  the behavior of the real cut-wire resonance frequengy
without any reference to their microscopic source. In comparison to the TMM simulations we see, however,
The artifacts observed in the HEM approximation ulti- too much structure, i.e., a series of periodicity band gaps
mately originate from the occurrence of band gaps introinstead of only one, around the intrinsic resonances. The ba-
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sic difference between the TMM simulation and the analytictional magnetic response around the cut-wire resonance. Al-
calculation of the scattering amplitudes in the continuum ishough even then the PEM spectrum is not nearly as erratic
the presence of a finite discretization mesh in the TMM,as the corresponding HEM spectrum, this indicates the
which implies a smallest distance, hence in turn a largestreakdown of the PEM approximation. This is not surprising
supported momentum. Obviously, this limitation will become since we now reach the photonic crystal limit and the inter-
visible whereng(w) grows large. nal structure of the metamaterial’s constituents must become
Lattice PEM approximationin our TMM simulations the  visible and no “effective description” should be possible any-
lattice version of the PEM does better correspond to the numore.
merical data than the continuum PEM. This does also apply Physical significance ofiygm(w) and eygy(w). Although
to independent Microwave Studio simulations which, in con-complicated by the periodicity artifacts, such functions are
trast to our TMM simulations, utilize a nonuniform discreti- useful to describe the scattering behavior of the metamaterial
zation of the metamaterial. If the discretization mesh is choand allow to make prediction how to design and tune their
sen finer the lattice PEM gradually approached theconstituents such as the SRR or the continuous wires. They
continuum PEM behavior. help to interpret and understand the scattering spectra ob-
As discussed above the HEM and the PEM approximationained from experiments and simulations. Last but not least
of the real metamaterial are basically length independenthey establish the connection between the low frequency
longer systems expose the same spectral features as the fiigiit where the plain homogeneous medium picture applies
unit cell. However, systems that consist of more than a singlgith the periodicity artifacts going to zero and the photonic
unit cell in propagation direction do contributeditional  crystal limit which is dominated entirely by the periodicity
tiny resonancelike structures in the effective material conpand structure. All practical realizations of SRR+wire type
stantsupem(®),enem(@) which are also present in the effec- metamaterials seem to reside within this transition region.
tive parameters of the PEM approximatiQpgy(w) and Momentum-dependent parametehs order to take into
epem(w) (not shown. For a slab ofN unit cells in propaga- account the periodic structure of real metamaterials, we con-
tion direction these additional structures appear as tiny bansidered the PEM model as a very simple explicit example of
gaps, quite similar to the periodicity band gap discusse@ periodic medium. Instead of qualifying the specific geom-
above, at frequencies wherggy(w)=mm/(NKL) with m  etry of the model used, we may alternatively introduce
e[-N,N]CZ, i.e., whenever the effective refractive index k-dependent effective parameteték, w), e(k, w) to describe
derived from the simple unit cell comes close to the mul-the spatial distribution of the electromagnetic response in the
tiples of the first Brillouin zone’s edge for the whole slab. PEM. Thesek-dependent effective parameters completely
The additional structures weaken and eventually cease to lharacterize the effective medium model. For the PEM
visible in the low-frequency limit as can be seen, for in-model defined in Fig. 1 we find by Fourier transformation
stance, for the SRR in Figs. 7 and 8. Note that again the(k,w)=(2m) Y2[dz&(z, w)e€*? the representation
behavior is generic: it appears in our TMM simulations for

LHM, SRR, and also cut-wire and continuous wire metama- (ko) = \27eodw)————— > S| k= — |,
terials (not shown, it has also been verified iIICROWAVE ikL meZ L
STUDIO simulations using a different numeric technique. As (53)

there is no such length dependence in the analytic periodic
medium model, we interpret this additional “noise” as a limi- and correspondingly fou(k,w). As a generalization of the
tation of the PEM approximation of the real metamaterialperiodic medium approximation we could further ask, which
which starts to see some internal structure apart from tharbitrary k dependence o&(k,w) and u(k,w), i.e., which
explicit periodicity. It is not yet clear whether the groups of spatial distribution of the effective material parameters, de-
N peaks directly at the magnetic resonance are related to thigribes a given metamaterial best. Although this might be
problem. For these there are at least two other interpretadesirable as a descriptive tool for the engineering of metama-
tions: They may be caused by the coupling of successiveerials, it is clearly beyond the scope of this paper.
SRRs in propagation direction which would lead to the split- What is the actual left-handed bandéMmally we want to
ting of the resonance frequeney, as for the eigenfrequency comment on the actual extent of the left-handed interval of
of coupled identical oscillators, or the finite accuracy of thetne LHM as it concerns experiments and applications. Obvi-
numeric simulation data could, in particular around the resoeusly, the bands with Re,;<0 retrieved via HEM and
nances, lead to a residual explicit length dependence. PEM approximation differ considerably in widttFig. 9

We demonstrate above that the PEM approximation ofvhich raises the question, where to expect the left-handed
real LHM and SRR metamaterials is good in the regionbehavior. We argue, that the correct region is given by the
around wy, if the corresponding vacuum wavelength in asHEM approximation. If there is a length-independent HEM
small as five times the size of the unit cell. Then we obtainechpproximation, the scattering behavior of the metamaterial
the anticipated effective behavior jmgy(w),eqew(w) and  can be described assuming plain-wave solutions inside the
all the anomalies and additional features seen in the HEMhomogeneous unit cell. These plain waves will possess a
approximation arose from the explicit periodicity. If we wave-vectorq related to the vacuum-wave-vecthrby the
move to even higher frequency where the vacuum waveretrieved negative index of refracti@enyey(w)k. They co-
length is close to the size of the unit cell, alsgem(w) and  incide with the nonperiodic factor of the Bloch waves de-
enem(w) start to develop unexpected features such as addscribing the periodic medium, i.e., coincide with the Bloch
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waves at the edges of the unit cells in the metamaterialuyey(w) and epem(w), Negative imaginary parts in either
Therefore a(usually damped plain wave with negative or u, truncated, misshapen resonances, additional band gaps
phase velocity will exist inside the metamaterial wheneverand the complicated high-frequency behavior found in the
Renyev < 0. This interpretation is also supported by experi-HEM approximation of numerically simulated SRR arrays
mental measurementsNote that this frequency interval is and LHM, but also metamaterials built of continuous wires
wider than the interval with simultaneously negative and of cut wires. In good approximation, the effective behav-
Reepem and Reupygy. The PEM approximation indicates ior can be decomposed into an effective behavior of the con-
that the isolated local response of the SRR and wire, withoustituents of the metamaterial and an explicit contribution of
the effects of periodicity, would lead to a much smaller left-the periodicity. Remarkably, the average contribution of con-
handed bandcompare the behavior of the low-frequency stituents such as the single split-ring behaves much as ex-
SRR, Figs. 7 and )8 The modifications of the generic re- pected from the assumed homogeneous medium picture,
sponse of SRR and wire by the band structure, in particulawhich can only be justified in the low-frequency limit where
by the emergence of periodicity band gaps, arising from thehe wavelength inside the structure is large compared to its
inherent periodicity of the metamaterial, greatly enhances thgeometrical size, up to frequencies where the vacuum wave
width of the negative index band in metamaterials which sedength becomes comparable to the size of the unit cell. This
strong artifacts from the periodicity. This concerns virtually allows a more reliable effective description and interpreta-
all published metamaterials with a vacuum wavelength taion of real metamaterials in terms of a periodic effective
unit cell length ratio smaller than approximately ten. At medium (PEM) instead of the conventional homogeneous
much lower frequency, truly effective homogeneous behaveffective mediumHEM) with all the hard to understand ar-
ior will emerge, the periodicity band gaps disappear, andifacts. The effects caused by the periodicity are generic, they
HEM and PEM description coincide. do qualitatively not depend on the particular geometry cho-
Geometry of the PEM modeis we demonstrated in Sec. sen for the metamaterial and universally apply to SRR,
[, for the quasi one-dimensional scattering problem of aLHM, continuous wire and cut-wire materials. Obviously,
system comprised of an integral number of unit cells inthe impact of the periodicity is noticeable throughout the
propagation direction, we can exactly describe any HEMrange of theny/L ratio =5---10 (i.e., vacuum wave length/
by a family of PEM, parametrized by the geometry unit cell length actually found in published simulations and
G=(ny,Nng,Np) of the periodic medium modébee Fig. 1 in  experiments for left-handed and related metamaterials. Our
terms of effective parametergpgyg(w) and epgygi(w).  simulations indicate that an unencumbered homogeneous ef-
For a simulated metamaterial, in general all effective paramfective medium behavior, though reachable in the low-
eters, uyem(w) and eppm(w) as well as upgyg)(w) and frequency Iin_1it, vyould requi_re &,/L ratio in the orde_r o_f 30
epeng)(@), Will show “unphysical” behavior caused by the OF larger which is geometrically not easy to obtain in real

internal spatial structure of the unit cell and the periodicity ofS@MPles. We investigated the difference between the con-

the metamaterials. If for a real metamaterial the local electinuum and the lattice formulation of the PEM approxima-

tromagnetic behavior of the constituents can be abstracteiPn and fo_und th_e latter to be bet_ter suited for application to
from their geometrical form, approximated by simple reso-OUr numerically simulated scattering data for real metamate-
nant and plasmonic response functigngg(w) andeye(®), nal‘ls'hOb?:Enl\jd with a Iattt|.ce—TMM |mpl%mentat||onbl w00l ¢
respectively, and separated from the effects of the periodicit € approximation may provide a valuable tool to
(i.e., band structuje then there is a particular geometry of nderstand the various features observed in the scattering

: ; ; spectra of real metamaterials in experiments and simulations.
t:e PEM which azproxmates;physmal F.);‘ran:?htﬁﬁ"’w | In the present paper we essentially discussed the vicinity of
() = pusrr(@) and epenig)(@) = ewire(w) Without the usual magnetic resonance of the SRR. Further work shall em-

artifacts disc_ussed in this paper. I_n our simulations the b_e%hasize on the frequencies above the magnetic resorance
_such ap_prOX|mat_|on was obtameo_l if the Iatt_|ce PEM Conta'n‘lncluding the cut-wire resonanae..
ing a single plain of scatterers in the unit cell, i.e., for a e expect the impact of the metamaterial’s periodicity to
geometryg=(5,1,4. be noticeable also in higher dimensional structures. Because
the unit cells of those structures tend to be more complicated
including couplings of SRRs in the different directions the
We have investigated the influence of the inherent periseparation of the “real” effective response of the constituents
odic structure always present in metamaterials which ar@nd the structures produced by the periodicity constitutes an
built from the repetition of a single unit cell on the effective even more imminent issue for understanding.
medium approximation. It has been shown analytically that
all the previously observed violations of the anticipated ef-
fective medium behavior of thesingle-ring SRR and LHM
involving a single magnetic and a single electric resonance This work was partially supported by Ames Laboratory
can be explained in terms of the periodic structure: A very(Contract No. W-7405-Eng-82 Financial support of
simple stratified periodic medium model involving slabs of EU FET project DALHM, NATO (Grant No. CBP.EAP-
vacuum alternating with slabs of a homogeneous materialCLG.98147), and DARPA (Contract No. MDA972-01-2-
with simple resonanju(w) and e(w) can reproduce all the 0016 are also acknowledged. P.M. thanks AP{Grant No.
artifacts such as resonance-antiresonance coupling 51-021602 for partial financial support.
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44We consider the transfer matrik for a planar stratified medium

in the z direction. Because di®=0, divB=0, the source-free
Maxwell equations only allow for four independent field com-
ponentsk'=(Ey, E;,Hy,Hy), F(z+d2=T(2)l'(2). The eigensys-
tem {k,F,} of the transfer matrix inside the stratd(z)I".(2)
=ekdzr,(z), defines the plain wave bag@cluding propagating
and evanescent wave®r the scattering problem. Localisot-
ropy implies that with eack also k is eigenvalue such that the
wave basis splits into right- and left-going waves, while transla-
tional invariance of the stratified mediumz factorizes the
transfer matrix with respect to the momentilmparallel to the
strata which is preserved across interfaces. Withilk|ak;) sub-
space thés andH fields are dependent, coupled by the Maxwell
equations, such that we can decompésas a linear combina-
tion of only two polarizations, e.g., TE and TM mode. For the
TE mode, the electric fiel& is parallel to the interface and we
can express it inside each stratum as a linear combination
(Adkz+Beikg)gkin For the TM mode the same applies to the
magnetic fieldH. In either case we can write a transfer matrix
for the wave amplitudes across a single interface(/A8’)"
=T (2)(AB)T, whereﬁ(k,(z):@,l(z)Tkk, ¢ (2) can be written as
product over phase factogs and the location independent ma-
trix Ty which coincides with the transfer matrix for the fields
(e ) = (A’ Be™?) instead of the amplitudes. In explicit
form we have

1= fwe )

()_(eikz 0 ) T _1<1+§kk’
Hlz)= 0 ™) MT\1-fw 144w

with o =u'k/(uk’) for the TE ande’k/(ek’) for the TM
mode. The transfer matrix for a vacuum-terminated stackl of
layers has the composition propefiy;=T»3T1, and inserting a
virtual vacuum interfacerl Kokig = Tyakneg Veokoac between each
adjacent two layers we get an expression

N

Toal(Kvad = ¢\;;C(ZN) |: H TotadZn — Zn—l)] DvadZo)

n=1
with the interfaces located af and the local transfer matrix of
a single layerTgadd)=Ty & (D)Ty _x which is given ex-
plicitly in Sec. Il.
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4SWe define the principal branch of dmy as -7 <argz< with 2 cogz)=expliz) +exp—iz) we obtain the principal branch
a branch cut along the negative real axis, continuous from arcco$z)=-i In(z+i\s“m) with a branch cut on the real axis
the second quadrant. Then the principal branches of forze (1,%), continuous from below, angle (-, ~1), continu-
Vz=|7Y2 exdi arg(z)/2] and In(z)=In|z/+i arg(z) can be defined ous from above.
with the same branch cut and continuity from above. Using
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