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Saturation of the Magnetic Response of Split-Ring Resonators at Optical Frequencies
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We investigate numerically the limits of the resonant magnetic response with a negative effective
permeability �eff for single-ring multicut split-ring resonator (SRR) designs up to optical frequencies. We
find the breakdown of linear scaling due to the free electron kinetic energy for frequencies above
�100 THz. Above the linear scaling regime, the resonance frequency saturates, while the amplitude of the
resonant permeability decreases, ultimately ceasing to reach negative value. The highest resonance
frequency at which �eff < 0 increases with the number of cuts in the SRR. A LC circuit model provides
explanation of the numerical data.
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FIG. 1 (color online). (a) The geometries of the 1-, 2-, and 4-
cut single-ring SRRs are shown; the unit cell has the dimensions
a� a in the SRR plane and 0:614a perpendicular to it. The SRR
is made of aluminum, simulated using a Drude-model permit-
tivity (fp � !p=2� � 3570 THz, f� � 19:4 THz), separated
from the 0:343a thick substrate (glass, " � 2:14) by a 0:014a
thin indium tin oxide layer (" � 7). The parameters of the SRR
are side length l � 0:914a, width and thickness w � t �
0:257a, and cut width (d) 0:2a, 0:1a, and 0:05a for the 1-, 2-,
and 4-cut SRRs, respectively. (b) The left panel shows the charge
accumulation in a 4-cut SRR, as a result of the periodic boundary
conditions in the ~E (and ~H) direction. The right panel shows the
equivalent LC circuit describing this SRR. Cg is the gap capaci-
tance and Cs the side capacitance resulting from the interaction
with the neighboring SRR.
In the past few years, left-handed metamaterials (LHMs)
of the split-ring resonator (SRR) [1] plus continuous wire
[1] type have been intensely studied throughout a wide
window of operating frequencies, from radio and micro-
waves [2,3] up to the THz region [4–7]. In some narrow
frequency band, the key components SRR and wire simul-
taneously provide a negative effective permeability �eff

(due to a resonance of circular currents around the SRR)
and a negative effective permittivity "eff with plasma fre-
quency !0p greatly reduced compared to that of bulk metal
!p, as a result mainly of the magnetic field energy domi-
nating the kinetic energy of the current carrying electrons
(for frequencies much lower than 100 THz). The antipar-
allel Poynting and wave vector exhibited by LHMs enables
a range of interesting possible applications, such as nega-
tive refraction, superlensing [8], etc.

There is a sustained effort [4–7,9] in the community to
push the operating frequency of the metamaterials deeper
and deeper into the THz region to reach ultimately optical
frequencies. This is so important because there are no
natural materials that have magnetic properties at such
high frequencies. At low frequency regimes, up to several
THz, the magnetic resonance frequency scales reciprocally
with the structural size. At high frequencies, however, this
linear scaling breaks down, as we show in this Letter.
Although, in principle, the dielectric materials could also
show an explicit frequency dependence of their material
parameters, it is the metal that first limits the operation of
the SRRs. At high frequencies, the kinetic energy of the
electrons in the metal (in both the SRRs and the wires)
cannot be neglected anymore in comparison with the mag-
netic energy. Indeed, the kinetic energy of the electrons in
the SRR adds to the magnetic energy a term which can be
written as LeI2=2, where the electron self-inductance Le is
given by l0=�S0!2

p"0�, where l0 � 4�l� w� � d is the
length of the axis of the wire making the ring (see
Fig. 1); S0 is the effective cross section of the ring, smaller
05=95(22)=223902(4)$23.00 22390
than S � wt (because of the skin depth and the asymmetry
of the current distribution between the center and the
external sides of the ring), and !p is the plasma frequency
of the material. The geometrical parameters l, w, and d are
defined in Fig. 1, along with their values for the SRR
systems studied here.

The formula Le � l0=�S0!2
p"0� can be derived in a

straightforward way by taking into account that the elec-
2-1 © 2005 The American Physical Society
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FIG. 2 (color online). The scaling of the simulated magnetic
resonance frequency fm as a function of the linear size a of the
unit cell for the 1-, 2-, and 4-cut SRRs (solid lines with symbols).
Up to the lower terahertz region, the scaling is linear, fm / 1=a.
The maximum attainable frequency is strongly enhanced with
the number of cuts in the SRR ring. The hollow symbols as well
as the vertical line at 1=a � 17:9 �m�1 indicate that no �< 0
is reached anymore. The nonsolid lines show the scaling of fm
calculated through Eq. (1) (LC circuit model).
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tronic kinetic energy LeI
2=2 is Nemev

2
e=2, where ve �

je=�ene�, I �
R
dsje � S0je, ve is the average electron

velocity, je is the current density, ne is the free electron
concentration, Ne � l0S0ne is the total number of electrons
participating in the current, and S0 � �S, with � < 1.
Notice that Le scales as 1=a, where a is the unit cell size
in the SRR plane, in contrast to the magnetic field induc-
tance Lm, which scales as a. The capacitance C of the split
ring scales also proportional to a (since all the geometrical
features scale proportional to a), so that the resonance
frequency fm of the SRR has the following a dependence:

fm �
1

2�
1

�������������������������
�Lm � Le�C

p �
1

2�
1

���������������������
c1a

2 � c2

p ; (1)

where c1 and c2 are independent of the length a in the
framework of the LC circuit model. For very small struc-
tural sizes, i.e., high frequencies, other factors that break
the linear scaling and contribute to the increase of the
Ohmic losses are the increased scattering of electrons at
the surface of the metal and the larger skin depth over
metal thickness ratio (note that the skin depth scales as
1=

���
a
p

, i.e., slower than 1=a). In contrast to the electron
self-inductance Le, those two effects depend in a compli-
cated way on the geometry and, in the experiment, also on
the surface smoothness, which prevents us from a more
detailed analysis of their effect.

Taking everything together, as we push the magnetic
resonance frequency higher by reducing the structural
size of the SRR, we expect to see a breakdown of the linear
scaling, which, together with a diminishing strength of the
SRR resonance due to the increase of the losses, ultimately
renders the SRR dysfunctional.

In this Letter, we investigate how high we can push the
magnetic resonance frequency of a realistic SRR design
made from aluminum. As shown in Fig. 1, we have con-
sidered single-ring (and not double-ring) SRRs as well as
multicut SRRs. There are several important advantages of
these choices. Theoretical and experimental studies [6,7]
have proved that an effective SRR can be built from a
single-ring design exploiting only the capacitance across
and near the cuts; this simplifies the fabrication, especially
for small structural sizes, and potentially reduces dielectric
losses, since the fields get strong only in and around the
cuts but not between the rings anymore. Keeping in mind
the need for higher dimensional isotropic metamaterials,
the unit cell has to be symmetric; hence, in turn, a sym-
metric SRR design [10] is required, as the 4-cut one; this,
as the 2-cut one, avoids the undesirable excitation of the
magnetic resonance by the electric field [11,12].

We simulate single-ring SRR-only metamaterial designs
similar to the experimental samples previously employed
in the 100 THz frequency range [5] for near infrared and
optical frequencies, using the commercial MICROWAVE

STUDIO code. The metamaterial is defined as a periodic
repetition of a single rectangular unit cell containing a
single SRR, as shown in Fig. 1. The cut size has been
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reduced according to the number of cuts, expecting to
approximately preserve the total capacitance C and the
total inductance Lm of the effective LC circuit constituted
by the SRR (assuming that C� wt=d and Lm � l0). The
direction of propagation and the electric field are parallel to
the SRR plane. The orientation of the SRR is such that
mirror symmetry with respect to the electric field vector is
preserved; thus, only the magnetic field couples to the
resonance of the circular currents in the SRR ring.

The purpose of the SRR metamaterial is to provide an
effective homogeneous negative magnetic permeability,
�eff<0. This is guaranteed only in the limit where the
unit cell is much smaller than the wavelength of the elec-
tromagnetic radiation. For realistic unit cells, we see arti-
facts in the homogeneous medium approximation brought
about by the periodicity [13,14], such as resonance-
antiresonance coupling between �eff and "eff or negative
imaginary parts in "eff . These artifacts basically occur
when the wavelength inside the material becomes compa-
rable with the size of the unit cell, i.e., when the effective
index of refraction neff renders the wave vector close to the
edge of the Brillouin zone and periodicity band gaps ap-
pear intermixed with the generic behavior of the resonance.

In Fig. 2, we show the results of our simulation for fm,
together with the outcome of the LC circuit model, Eq. (1).
It is worthwhile to point out that the simple formula (1)
with realistic values of c1 and c2 reproduces well the
simulation, especially for the 4- and the 1-cut cases; the
saturation value of the 2-cut case is lower than the simu-
lation value by 19%; this discrepancy is attributed to a
breakdown of the homogeneous effective medium (see
below). On the basis of the simple formulas C� wt=d
and Lm � l0, it is expected that the three simulation
curves ought to more or less coincide, since l0 is the
same for the 1-, 2-, and 4-cut cases and C2 � C4 � C,
2-2
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since C2 � Cd=�2d2�, C4 � Cd=�4d4�, and d2 � d=2 and
d4 � d=4 (the subscript in capacitance and cut width refers
to the 2- and 4-cut cases). However, as is shown in Fig. 2,
the ratio of the fms in the linear regime is fm;2=fm;1 �
1:39, fm;4=fm;1 � 2:1, which implies, assuming Lm;4 �
Lm;2 � Lm;1, that C1=C4 � 4:4 and C1=C2 � 1:93. There
are two physical reasons why those ratios are so different
from one. First, the formula C� wt=d is not valid because
d is not much smaller than w. Numerical electrostatic
calculation of the capacitance (approximately including
the presence of the dielectric substrate) at each cut gives
C�1�g �10:5a pF, C�2�g � 12:7a pF, and C�4�g � 18a pf (a in
meters), where the superscript refers to the 1-, 2-, and 4-cut
cases, respectively. Second, because of the periodic bound-
ary conditions along the direction of the electric field only
(in the simulations, there is only one unit cell along the ~k
direction), there is a charge accumulation to the sides of the
cuts, as shown in Fig. 1(b) for the 4-cut case. This adds a
side capacitance C�n�s , n � 1; 2; 4, which was found nu-
merically to be (including an estimated increase due to the
dielectric substrate) C�1�s �13:109a pF, C�2�s � 18:81a pF,
and C�4�s �20:22a pF (a in meters). Combining these val-
ues [see Fig. 1(b)], we found C1 � 23:609a pF, C2 �
15:755a pF, and C4 � 6:118a pF. The ratios of the elec-
trostatically calculated capacitances C1=C4 � 3:86 and
C1=C2 � 1:50 turn out to be lower than, but not far from,
the ones inferred from the simulations. The difference can
be attributed to the previously mentioned approximations
in obtaining the various L and C and to retardation effects
present in the simulation but absent in the LC circuit
modeling.

We calculated also the inductance Lm � L�out�
m � L�in�m by

employing the formulas [15] L�out�
m � ��0l

0=2���
	log�8r=b� � 1:75
 (inductance of a circular ring of radius
r, with a circular cross section of radius b), where r �
l0=2�, �b2 � wt and l0 � 4�l� w� � d for the inductance
outside the metal and L�in�m � ��0l

0=8�� for the internal
inductance in the metal. The final result is Lm � 0:76a �H
(a in meters). In obtaining these values, we have ignored
the mutual inductance due to the periodicity along the ~H
direction (see Fig. 1) because of the rather large separation
(0:614a); on the other hand, we corrected the above values,
taking into account that the periodic boundary conditions
(along the direction of the electric field) imply mutual
inductances which reduce the value of Lm by a factor
estimated to be 0.75. Thus, L0m � 0:75Lm � 0:57a �H
(a in meters).

Using the formula for Le derived before (with � � 2=3)
and the total capacitance values, we find the c2 of Eq. (1);
for the 1-cut case, c2 � 0:29� 10�30. Using our numerical
results, Eq. (1) is reduced to

f�n�m �
159 THz

�����
c0n

p �����������������������������
6:43a2 � 0:14
p ; n � 1; 2; 4; (2)

where a is in �m, and c01 � 2:08, c02 � 1:39, c04 � 0:54.
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We expect the magnetic resonance to become broader
and weaker for each of the three cases studied here as the
size becomes smaller and the resonance frequency in-
creases; this is due to the losses that are increasing linearly
with the resonance frequency. Furthermore, the permittiv-
ity of the metal, described in our simulations through the
Drude-model formula, becomes smaller as the frequency
increases, and, hence, the contrast to vacuum decreases,
while Ohmic losses are increasing, leading to a weaker
resonance of the SRR. The permittivity of the dielectrics is
still considered frequency independent in our simulations,
using its typical values in the THz regime.

The transition to everywhere positive Re��!� is indi-
cated by the change from full to hollow symbols in Fig. 2.
Interestingly, this transition occurs pretty consistently for
all SRR designs for a specific size around 50 nm rather than
for a specific frequency. This behavior can be deduced
from the LC circuit analysis. Indeed, one can obtain a
rough estimate of the permeability � � �0�1� ��, where
� is the magnetic susceptibility. Using the well known
formulas � � M=H � m=VH, m � IA, I � E=Z, and
E � �d�=dt � i!�HA, where M is the magnetization,
m is the magnetic moment of the unit cell of volume V,
H � B=�, B is the magnetic field, I is the current, A � l02

is the area of the loop, � is the magnetic flux through the
loop, Z is the impedance, Z�R� iLt!	1��!m=!�2
,
R��l0=S0, ��1=�, where ���i!�"�"0� is the ac
conductivity given by the Drude formula, and Lt�Lm�
Le. The final result is of the form � � �=�1���, where
� for ! � !m and !m � !� turns out to be independent
of!m and proportional to length square. On the other hand,
the LC circuit model gives j�j always less than unity,
which means �eff positive, in disagreement with the simu-
lations and the experiment.

In Fig. 3, we show the disappearance of the �eff < 0
region in the magnetic response with decreasing structure
size for the 4-cut SRR design. The effective permeability
�eff�!� has been obtained by employing the retrieval
procedure [16] from the simulated scattering data.
Qualitatively, as we pointed out before, with decreasing
size of the unit cell, !m moves to higher frequencies but
slower than it would be expected from the linear scaling.
Simultaneously, the strength of the resonance, and, hence,
the amplitude of the resonant�eff , decreases. Starting from
�eff � 1 far from !m, a weak resonant �eff cannot reach
negative values anymore, although the presence of the
magnetic resonance can be confirmed up to very small
unit cells. However, even in those cases, which are unin-
teresting for constructing left-handed metamaterials, the
resonance frequency does not significantly increase by
decreasing the structural size. It must be stressed that the
4-cut design retains the negative Re� region for higher
frequencies (up to about 550 THz) than the 2-cut design
(up to 420 THz) and the 1-cut case (up to 280 THz). The
explanation for this superior performance of the 4-cut case
can be inferred from the dependence of the frequency of
the disappearance of the negative � regime mainly on the
2-3



FIG. 3 (color online). Simulation of the shape and amplitude
of the magnetic resonance in Re��!� of the 4-cut SRR for unit
cell size a � 70, 56, 49, and 35 nm (left to right).
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length scale and the fact that more cuts of smaller widths
produce higher electric field gradients [17], smaller capaci-
tances, and, hence, higher magnetic resonance frequency
for the same length scale. The 2-cut case needs further
discussion. For a given structural size, the resonance fre-
quency!m increases with the number of cuts, which brings
the resonant refractive index neff closer in frequency to the
edge of the Brillouin zone, nBZ � �c=!a, promoting peri-
odicity artifacts. In contrast, two effects counteract the
periodicity: Generally, the breakdown of the linear scaling
limits the increase of !m, while the edge of the Brillouin
zone continues to scale geometrically, leading to reduced
periodicity artifacts deeper in the saturation regime, i.e.,
for smaller structural size. Second, the increasing losses at
higher frequencies reduce the amplitude of the magnetic
resonance and increase the separation of the resonant neff

from the nBZ in the vertical direction (i.e., in magnitude)
despite a smaller �vacuum=a ratio. Consequently, we see a
very weak periodicity artifact for the single-cut SRR, be-
coming strong for the 2-cut SRR but decreasing again for
the 4-cut SRR. The periodicity leads to a deformation of
the �eff resonance, as has been discussed in great detail in
Ref. [13], which saturates and widens the �eff<0 region.

We stress the fact that the 4-cut single-ring SRR design
is favorable for more-dimensional metamaterials not only
for its highest attainable magnetic resonance frequency but
also for its inherent symmetry [11,12]. For the 2-cut de-
sign, the role of elongating the two noncut sides is worth-
while to be explored, since this way one may induce a
negative " response as well.

In conclusion, we investigated numerically the limits of
the resonant magnetic response with negative effective
permeability �eff < 0 for realistic single-ring multicut
SRR designs at optical frequencies. We found the break-
down of linear scaling due to the increasing importance of
the kinetic energy of the conduction electrons. The mag-
netic resonance of the SRR is traceable down to a very
small structural size of �35 nm; however, the resonance
22390
frequency saturates above the linear scaling regime, while
the amplitude of the resonant permeability decreases, ulti-
mately ceasing to reach negative value. The highest pos-
sible resonance frequency exhibiting �eff < 0 strongly
increases with the number of cuts in the SRR and depends
mainly on the length scale, disappearing for a � 60 nm.
The simulation results can be explained by a LC circuit
model, which reproduces the quantitative aspects of the
resonance frequency vs length scale, especially for the 4-
cut and the 1-cut cases. The discrepancy for the 2-cut case
can possibly be attributed to the complications by period-
icity artifacts, which, at larger structure size, increase with
the number of cuts in the SRR but for small structural size,
deep in the saturation limit, become less important again. It
would be interesting to test our predictions by fabricating
the 4-cut rings using gold and silver (which exhibit lower
losses and closer to Drude-model behavior even at very
high frequencies).
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