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We study the electromagnetic response of a cubic array of polarizable and resonant point dipoles. We show,
that in addition to the formation of photonic and polaritonic bands and gaps in the dispersion of transverse
waves, the array allows for bulk and surface plasmon wave propagation, as well as negative refraction in a
polaritonic band, and subwavelength lensing. We suggest experimental arrangements for demonstration of
these effects, both at microwave and optical frequencies.
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In an early attempt to model the electromagnetic response
of an atomic crystal, Mahan and Obermair �MO� developed a
theory for electromagnetic wave propagation in an array of
point dipoles, and developed a simple, exact formula for the
band structure of the transverses modes.1 Their theory, how-
ever, has not been applicable to atomic crystals, because the
wave function overlap between the neighboring atoms in
such a crystal renders invalid the separability of the elec-
tronic and photonic degrees of freedom, implied explicitly in
the point dipole model. On the other hand, the point dipole
model and MO theory have been shown to properly describe
the electromagnetic response of quantum dots.2 In such a
system, nanoscopic islands of electrons �quantum dots�, gen-
erated at semiconductor interfaces either by doping or an
electrode arrangement, had dimensions much smaller than
the wavelength of the electromagnetic radiation, i.e., D��,
and the inter-dot separation was big enough to avoid the
wave function overlap. Thus, the conditions for applicability
of the point dipole model were satisfied. At present, periodic
arrays of point dipoles �point dipole crystals� can be fabri-
cated by a variety of techniques, and thus the MO theory,
which describes them very well acquired a new importance.
In this paper, we use this theory to study in detail the elec-
tromagnetic response of a cubic point dipole array. We show,
that in addition to the formation of photonic and polaritonic
bands and gaps in the dispersion of transverse waves, the
array allows for bulk and surface plasmon wave propagation,
as well as negative refraction in a polaritonic band, and sub-
wavelength lensing. We also suggest experimental arrange-
ments for demonstration of these effects, both at microwave
and optical frequencies.

According to MO theory the fully retarded dispersion of a
transverse electromagnetic �TEM� wave propagating through
a point dipole crystal is given by1

1 = 4���1

2

� sin �

cos � − cos�n�� − TT�k�� �1�

where

n� = ka = K �2�

� = �a/c �3�

� is the polarizability per unit volume of the crystal, � is the
frequency, k is the wave vector, c speed of light, a is the
lattice constant, and n is the refractive index. Assuming that

the crystal is simple cubic, with the lattice vector R�

= �i , j ,m�a �i , j ,m integers�, and that the charge displace-
ments are along �100� or equivalent directions, it can be
shown that

T�K� =
1

4�
�
i=−I

I

�
j=−I

I

�
m=−M

M
cos�Kp�

�i2 + j2 + m2�3/2�1 −
3m2

i2 + j2 + m2	
�4�

where I and M→�. For the transverse charge displacements
T�K�=TT�K� and p= i, �or p= j�. For the longitudinal charge
displacements T�K�=TL�K� and p=m.

In the long wavelength �a�� /2��, or equivalently in the
nonretarded �c→ � � limits, ��1, and then Eq. �1� becomes

n2 = 	��,K� = 1 + 4��/�1 + 4��TT�K�� �5�

where 	�� ,K� is the transverse dielectric function. Accord-
ing to Eq. �5�, the polarization of the crystal is given by
�E / �1+4��TT�K�� and, therefore, it becomes singular for

1 + 4��TT�K� = 0 �6�

At this condition, polarization can be finite even for a van-
ishing applied electric field E, and thus Eq. �6� is the condi-
tion for the transverse polarization �TP� eigenmode of the
crystal. The fully retarded treatment used in Ref. 1, con-
ducted in the Coulomb gauge shows that the general condi-
tion for the longitudinal �LP� eigenmode has also the form of
Eq. �6�, but with the transverse TT�K� replaced by the longi-
tudinal TL�K�.

The sums in Eq. �4� can be easily evaluated numerically,
since only one of them is slowly convergent. This is the sum
along the lines of dipoles with induced charge displacements
along the lines, i.e., the m-summation in Eq. �4�. It requires,
in general, more than a few hundred terms to provide better
than 0.1% convergency. The remaining sums �i and j� are
rapidly convergent. The main difference between the trans-
verse and longitudinal case is the fact that while for the
transverse case we can use the following approximation
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TT�K� 
 v�0� + 2v�1�cos�K� , �7a�

where

v�i� =
1

4�
�

j=−�

�

�
m=−�

�
1

�i2 + j2 + m2�3/2�1 −
3m2

i2 + j2 + m2	
�7b�

v�0� = − 0.3594 v�1� = 0.013 03 �7c�

for the longitudinal case, in general, a large number of cosine
terms contributes to the sum in Eq. �4�.

Figure 1 illustrates the behavior of T�K�, for varying sum-
mation ranges I and M. For K=0

TL�0� = TT�0� = − 1
3 �8�

which is required by the Lorentz-correction argument. For
larger K there is a region in which TL�K� progresses rapidly
from the −1/3 value at K=0 to a simple cosine form

TL�K� 
 0.719 29 − 0.052 63 cos�K� �9�

“Sharpness” of this transition increases with the number of
the dipole rows included in the summation, i.e., with increas-
ing I. This progression is clearly visible in Fig. 1, which
shows a very sharp transition already for I=100. Eventually,
for I→� a step function is obtained, with the discontinuity at
K=0. This is a very well known, cross-dimensional behavior
of polarization modes, similar to that in metallic
superlattices,3 multiwall carbon nanotubes,4 or single-wall
nanotube bundles.5 While in a single metallic layer �or a
single-wall nanotube� there are gapless plasmons, in the in-
finite superlattice of the metallic planes �and multiwall nano-
tube, or a infinite bundle of single-wall nanotubes� a gap
must open in the plasmon spectrum reflecting the three-
dimensional �3D� behavior of the systems. The same effect
occurs here. With increasing I, which measures the size of
the dipole-line “bundle,” the gap develops for K
1/ I. Fig. 1
also shows that

TL�0+� − TT�0� = 1 �10�

Using the calculated T�K�, the dispersions for the polar-
ization eigenmodes can be obtained from Eq. �6�. Assuming
simple, harmonic oscillations of the induced polarization
charges for a single dipole, we get

���� =
�p

2

4���0
2 − �2� =

�p
2

4���0
2 − �2� �11�

where �0=�0a /c, �p=�pa /c, �0 is the resonance frequency
of the charges, and �p is a constant, with dimensions of a
frequency.

The form of ���� given by Eq. �11� is quite general. It is
valid, for example, for metallic systems such as nanopar-
ticles, in which case �0 is the well known Mie resonance,6

and for quantum dots.2 It was shown2 that as long as the
potential confining electrons inside a metallic unit is para-
bolic �m�0

2x2 /2�, its resonant absorption is at frequency �0,
i.e., each dot responds to radiation as a simple harmonic
oscillator, and electron-electron interactions do not affect the
response. In this case also �p

2 =4�Ne2 /Vm* is the reduced
plasma frequency of the electrons, with N the total number of
electrons in the entire system, V the total volume of the en-
tire system, m* the effective electron mass, and e the electron
charge.

Using Eq. �11� we obtain from Eq. �6�

� = �i�K� = ��0
2 + �p

2Ti�K� �12�

where i=T for the TP, and i=L for the LP mode. While the
LP mode, with the dispersion given by Eq. �12�, is a legiti-
mate eigenmode in the presence of the photon field, the TP
eigenmode given by Eq. �12�, is not. Instead, the interaction
with photons simply renormalizes the nonretarded transverse
polarization charge oscillations yielding the TEM polariton
mode given by Eq. �1�. On the other hand, the fully retarded
treatment leading to Eq. �1�, conducted in the Coulomb
gauge,1,7 shows that the longitudinal propagating modes in
the crystal are electromagnetically nonretarded,8 i.e., they do
not couple to the photon field in the limit of an infinite crys-
tal. The coupling can be achieved by breaking the perfect
translational invariance of the crystal, e.g., by introducing a
surface.

The TEM polariton dispersion from Eq. �1�, in the long-
wavelength limit ���1� is given by

� =��̄L
2�K� + K2

2
±�� �̄L

2�K� + K2

2
�2

− K2�T
2�K�

�13�

where

�̄L�K� = ��T
2�K� + �p

2 �14�

The corresponding mode structure is shown in Fig. 2, for
�0=�p=0.2. Solid lines represent the TEM branches as
given by Eq. �13�. The upper dot-dashed line is for the LP,
and the lower dashed for the TP mode. Inset in the upper-left
corner shows a zoomed-in section of the dispersion diagram
with clearly visible parabolic dispersions of both, the TEM
upper branch, and the LP mode. The asymptotics of the TEM

FIG. 1. �Color online� T�K� vs K, for varying summation ranges
I and M.
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branches are as follows. For K→� the upper branch yields
the vacuum light line �=K, and the lower branch �
=�T�K�. For K→0 the lower branch yields the light line in
the effective medium with the dielectric constant 	�0,0�, i.e.,

�=K /�	�0,0�, and the upper �=�̄L�K�=�L�K� �last equal-
ity from Eq. �10��. Thus a gap opens, as sketched in the
middle-right inset in Fig. 2, which can be viewed as a result
of an avoided crossing of the vacuum photon mode with the
polarization modes of the medium. The left panel in the inset
shows schematically the vacuum light line and the two po-
larization modes before, and the right one after the interac-
tion of photons with the dipolar polarization fields was
“switched-on.”

The general solution of Eq. �1�, not restricted to the long
wavelength limit, has a simple form for the cubic array

K = f��� = arccos�B1 ± �B1
2 − 8v�1�B2

4v�1�
	 �15�

where

B1 = A + 2v�1�cos � �16�

B2 = A cos � + 1
2� sin � �17�

A =
�2 − �0

2

�p
2 − v�0� �18�

Figure 3 shows the mode band structure in this case for large
�0=�p=1.5. The dotted line represents the TEM modes, and
the thin line is the LP mode. K=� represents the edge of the

Brilluoin zone. Note the Umklapp of the TEM mode and the
gap opening at this edge. Thus, this point dipole array is a
photonic band gap crystal. The LP mode is seen to intersect
with the TEM mode. This, however, does not imply the
mode interaction, since no avoided crossing of the two
modes occurs at the crossing point.

The LP can be excited by a p-polarized, incoming elec-
tromagnetic field at the crystal surface. In the long wave-
length limit ���1� the point-dipole crystal is expected to
act as an effective medium, with a dielectric function n given
by Eq. �5�. Then, the reflection coefficient �at a normal inci-
dence� from a surface of such an effective medium is

r =
n − 1

n + 1
�19�

Mahan and Obermair1 have calculated r exactly �directly
from their formalism� in the long wavelength limit, and
found that indeed it is essentially indistinguishable from Eq.
�19�. Using this excellent effective medium approach, we
consider next a finite thickness slab of the point dipole crys-
tal, placed in vacuum. The slab is parallel to the x-y plane,
and extends from z=−d to z=0. All fields are assumed to be
�exp i�kxx−�t�. There are two transverse waves for z�−d
�in vacuum� with z-components electric field amplitudes
E0z=1 and E1z, four waves inside the slab �two transverse E2z
and E4z, and two longitudinal E3z and E5z�, and only one
�transverse� for z
0 �in vacuum� E6z. By requiring that the
total electric field, and the perpendicular to the surface of the
slab current �jz=��Ez�+��Ez�; where symbol � represents
transverse, and � longitudinal components� are continuous
across both interfaces,9 we obtain the following matrix equa-
tion for the z-components of the electric fields

FIG. 2. �Color online� Band structure for the dipole crystal in
the long wavelength limit, for �0=�p=0.2. Solid lines represent
the TEM branches as given by Eq. �13�. The upper dot-dashed line
is for the LP, and the lower dashed for the TP mode. Inset in the
upper-left corner shows a zoomed-in section of the dispersion dia-
gram. The inset in the middle-right section shows a schematic of the
band anti-crossing with TP and LP lines.

FIG. 3. �Color online� Band structure for �0=�p=1.5. The dot-
ted line represents the TEM modes, and the thin line is the LP
mode. K=� represents the edge of the Brilluoin zone.
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s1 − 1/s2 − 1/p − s2 − p 0

K1s1 K2/s2 − �/p − K2s2 �p 0

0 �/s2 1/p �s2 p 0

0 1 1 1 1 − 1

0 − K2 � K2 − � K1

0 � 1 � 1 0

�

E1z

E2z

E3z

E4z

E5z

E6z

� = 

− 1/s1

K1/s1

0

0

0

0

�
�20�

where K1=� cos �, K2=��2	��̄�−Kx
2, and Kx=� sin �. �

is the angle of incidence for the incoming wave at z=−d.

	��̄� is the dielectric function given by Eqs. �5� and �11�, but

for K→0, and with �2 replaced by �̄2=���+ i��, where �
is the effective damping parameter. si=exp�iKiD�, where i
=1,2, and D=d /a. p=exp�iL2D�, where L2=�Klong

2 −Kx
2.

Klong is obtained by inverting Eq. �12�, in which �2 is re-

placed by �̄2. �=�� /��=1−	��̄�, where the conductivities

are defined through 	��̄�=1+4�i�� /�, and 	�=0=1
+4�i�� /�. Finally �=Kx

2 /L2. Equation �20� can be analyti-
cally solved for E6z, yielding the transmission coefficient

t = E6z =
B1

s1B2
�21�

where

B1 = 4	��̄�K1����s2 − 1/s2� + K2�p − 1/p�� �22�

B2 = �1/s2��K1 + K2���K1 + K2��1/p − p� + ��K1 − ��
��s2 − 1/p� + ��K1 + ���p − s2�� + s2�K1 − K2�
���K1 − K2��p − 1/p� + ��K1 − ���1/p − 1/s2�
+ ��K1 + ���1/s2 − p�� − ��1/p��K1 − ��
���K1 + K2��1/s2 − p� + ��K1 − ���s2 − 1/s2�
+ �K1 − K2��p − s2�� − �p�K1 + ��
���K1 − K2��s2 − 1/p� + �K1 + K2��1/p − 1/s2�
+ ��K1 + ���1/s2 − s2�� �23�

Figure 4 shows plot of tt� �transmittance� versus � for a
slab of thickness D=100, and for �=0. The dipole crystal
has �0=�p=0.05. The transmittance calculated with the use
of the full nonlocal formula �Eqs. �21�–�23�� is indistinguish-
able from that obtained from the local formula10

tloc =
4	��̄�K1K2s2�1/s1�

�	��̄�K1 + K2�2
− �	��̄�K1 − K2�2

s2
2

�24�

This is to be expected, since at normal incidence the longi-
tudinal modes cannot be excited. tt� is essentially zero in the
gap, as expected. There are also peaks due to Fabry-Perot
�FP� resonances of the transverse waves in the slab, at which
K2D=s�, where s=1,2 ,3 . . . .

To activate the longitudinal waves we increase the angle
of incidence �. Figure 5 shows calculation for �=45 deg,
for a very thin slab with D=10. Now there is a difference
between local and nonlocal results. First, the evanescent

transmission in the gap region is slightly higher for the non-
local case. Secondly, in addition to the FP resonances of the
transverse waves, FP resonances of the longitudinal waves,
multiply reflected between the surfaces of the slab, appear in
the narrow band at �
0.066 �see the inset�. While the
above calculations are carried out with �=0.0002 �Q

� /2�
165�, these resonances are still visible for slabs
with damping constant �=0.0005 �Q
66�. Note, that propa-
gation of these longitudinal waves is essentially perpendicu-
lar to the surface, since L2
Kx at this frequency.

The dielectric function �5� can be written in the Lyddane-
Sachs-Teller form

	��,K� =
�̄L

2�K� − �2

�T
2�K� − �2 �25�

In the long wavelength limit this reduces to

FIG. 4. �Color online� The transmittance tt* vs frequency � for
a slab of thickness D=100, and for �=0.

FIG. 5. �Color online� The transmittance tt* vs frequency � for
a slab of thickness D=10, and for �=45 deg.

KEMPA, RUPPIN, AND PENDRY PHYSICAL REVIEW B 72, 205103 �2005�

205103-4



	��,0� =

�0
2 +

2

3
�p

2 − �2

�0
2 −

1

3
�p

2 − �2

�26�

from which we find that 	��S ,0�=−1 at the frequency �S

=��0
2+ �1 � 6 ��p

2. At this frequency there will exist surface
plasmons localized at the crystal-vacuum interface. It has
been shown by Pendry,11 that at the surface plasmon fre-
quency a very thin �d��� film of the material can amplify
evanescent waves, and can thus act as a superlens. Our de-
tailed calculation shows that a very thin film of a crystal
made of Ag nanoparticles indeed superlenses, similarily to a
thin Ag film,11,12 but is less efficient. Details of this investi-
gation will be given elsewhere.

Finally, we consider possibility of the negative refraction
in the point-dipole crystal. This effect, originally proposed
by Veselago,13 occurs in media with n=−1. Since such a
medium does not occur in nature, a practical way was pro-
posed to fabricate them by using a network of wires and the
so called split-ring resonators.14 It has been shown, that a
two-dimensional photonic crystal can also simulate such a
medium,15 and that the negative refraction can occur at the
center of the Brilluoin �i.e., �-point� if the second photonic
band has a negative curvature. This scenario can be achieved
in the point-dipole crystal. To show this, we first modify the
theory to allow for the crystal to be immersed in a dielectric
background �with a dielectric constant 	b�. This can be ac-
counted for by simply replacing �in all the above equations�
�, �0, and T, with ��	b, �0

�	b, and T	b, respectively. We
consider a crystal with the following parameters: �0=�p
=3, and 	b=5 �e.g., TiO in the visible frequency range�.
Figure 6 below shows the corresponding dispersions. There
are three TEM mode branches, with the middle, and the top
one exhibiting strong negative slopes. The sketch in the inset
in Fig. 6 clarifies the topology of the bands. It is the
minimum-bending avoided-crossing of the photon line with
the LP and TP asymptotics, as before, but this time the pho-
ton line is “Umklapped” at the Brilluoin zone, before cross-
ing the asymptotics. The left panel in the inset shows the
case before, and right panel after the mode interaction has
been “switched on.” While the top branch is entirely due to
“Umklapp,” the middle one has a strongly polaritonic nature.
This branch has a negative slope �controlled by a choice of
�0 and �p�, and therefore the negative refraction is expected
at the frequency given by the intersection of the vacuum
light line with this branch. This negative refraction is medi-
ated by polaritonic waves rather than by the pure TEM
modes, which is usually the case in photonic crystals. Similar
effects were observed recently in two-dimensional polari-
tonic crystals of metallic rods.16–18

We now discuss possible manufacturing scenarios for the
point-dipole crystal. For tests in the microwave frequency

range we propose a cubic crystal of small spheres made of
BSTO�Ba1−xSrxTiO3�-oxide composite ceramics.19 This ma-
terial has dielectric constant 	�=646 and the loss tangent
	� /	�=0.004 at f =2.139 GHz ��=14 cm�, and this allows
for sharp Mie resonances to develop inside small spheres.
Using the Mie theory we have found the resonance fre-
quency to be given by 2�R /�=0.123, where R is the sphere
radius. Here this yields R=0.27 cm. The polarizability of a
single sphere is then given approximately by Eq. �11� with
�0=2�a /�. The lattice constant of this crystal should be a

1 cm. For tests at visible frequencies one might use metal-
lic nanoparticle arrays �e.g., Au nanospheres or nanorods� in
a transparent matrix. Such nanoparticles can exhibit Mie
resonances with Q
25,20 and these lead to the desired form
of the particle polarizability. Clearly the low value of Q is a
problem in this case, and therefore, many of the phenomena
discussed in this paper might become invisible. Another pos-
sibility is to employ films of metal atoms �e.g., Cr� periodi-
cally distributed in a transparent matrix �e.g., Al2O3�. Such
atoms also have the desired form of the polarizability, and in
addition Q
1000 can be expected since such materials �with
random distribution of atoms� are used as active media of
lasers �e.g., ruby�.21

In conclusion, we have studied the electromagnetic re-
sponse of a cubic array of polarizable and resonant point
dipoles. We show, that the system is a nonlocal polaritonic
crystal, that allows for bulk and surface plasmon wave
propagation in addition to the usual photonic crystal effects
�bands, gaps, etc.�. In addition, a negative refraction, and
a subwavelength lensing can occur for properly chosen
parameters of the system. An experimental demonstration
of these effects is possible, both at microwave and optical
frequencies.

FIG. 6. �Color online� Band structure for �0=�p=3, and 	b

=5. The inset shows a schematic of the band anti-crossing with TP
and LP lines.
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