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Reversing Light:  
Negative Refraction 
 
 

 
ictor Veselago, in a paper1 published in 1967, 
pondered the consequences for electromagnetic 
waves interacting with a hypothetical material for 

which both the electric permittivity, ε , and the magnetic 
permeability, µ , were simultaneously negative. As no 
naturally occurring material or compound has ever been 
demonstrated with negative ε  andµ , Veselago wondered 
whether this apparent asymmetry in material properties 
was just happenstance, or perhaps had a more fundamental 
origin.  Veselago concluded that not only should such 
materials be possible but, if ever found, would exhibit 
remarkable properties unlike those of any known 
materials, giving a twist to virtually all electromagnetic 
phenomena. Amongst these properties is a negative index 
of refraction and, although Veselago always referred to 
the materials as ‘left handed’, we shall prefer the negative 
index description. They mean one and the same thing, but 
our description appeals more to everyday intuition and is 
less likely to be confused with chirality, an entirely 
different phenomenon. 

So why are there no materials with negative ε  andµ ?  
We first need to understand what it means to have a 
negative ε  or µ , and how it occurs in materials. The 
Drude-Lorentz model of a material is a good starting 
point, as it conceptually replaces the atoms and molecules 
of a real material by a set of harmonically bound electron 
oscillators, resonant at some frequency 0ω .  At 
frequencies far below 0ω , an applied electric field 
displaces the electrons from the positive core, inducing a 
polarization in the same direction as the applied electric 
field.  At frequencies near the resonance, the induced 
polarization becomes very large, as is typically the case in 
resonance phenomena; the large response represents 
accumulation of energy over many cycles, such that a 
considerable amount of energy is stored in the resonator 
(medium) relative to the driving field.  So large is this 
stored energy that even changing the sign of the applied 
electric field has little effect on the polarization near 

resonance!  
That is, as 
the 
frequency of 
the driving 
electric field 
is swept 
through the resonance, the polarization flips from in-phase 
to out-of-phase with the driving field and the material 
exhibits a negative response.  If instead of electrons the 
material response were due to harmonically bound 
magnetic moments, then a negative magnetic response 
would exist. 

Though somewhat less common than positive 
materials, negative materials are nevertheless easy to find.  
Materials with ε  negative include metals (e.g., silver, 
gold, aluminum) at optical frequencies, while materials 
with µ  negative include resonant ferromagnetic or 
antiferromagnetic systems.  

That negative material parameters occur near a 
resonance has two important consequences.  First, 
negative material parameters will exhibit frequency 
dispersion: that is to say they will vary as a function of 
frequency.  Second, the usable bandwidth of negative 
materials will be relatively narrow compared with positive 
materials.  This can help us answer our initial question as 
to why materials with both negative ε  and µ  are not 
readily found.  The resonances in existing materials that 
give rise to electric polarizations typically occur at very 
high frequencies, in the optical, for metals, or at least in 
the THz to infrared region for semiconductors and 
insulators.  On the other hand, resonances in magnetic 
systems typically occur at much lower frequencies, 
usually tailing off toward the THz and infrared region.  In 
short, the fundamental electronic and magnetic processes 
that give rise to resonant phenomena in materials simply 
do not occur at the same frequencies, although no physical 
law would preclude this. 
 
Metamaterials extend material response 
Because of the seeming separation in frequency between 
electric and magnetic resonant phenomena, Veselago’s 
analysis of materials with ε  and µ  both negative might 
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have remained a curious exercise in electromagnetic 
theory.  However, in the mid-1990s, researchers began 
looking into the possibility of engineering artificial 
materials to have tailored electromagnetic response.  
While the field of artificial materials dates back to the 40s, 
advances in fabrication and computation—coupled with 

the emerging awareness of the importance of negative 
materials—led to a resurgence of effort in developing new 
structures with novel material properties. 

To form an artificial material, we start with a 
collection of repeated elements designed to have a strong 
response to applied electromagnetic fields. So long as the 
size and spacing of the elements are much smaller than the 
electromagnetic wavelengths of interest, incident radiation 
cannot distinguish the collection of elements from a 
homogeneous material.  We can thus conceptually replace 
the inhomogeneous composite by a continuous material 
described by material parameters ε  and µ . At lower 
frequencies, conductors are excellent candidates from 
which to form artificial materials, as their response to 
electromagnetic fields is large. 

A metamaterial mimicking the Drude-Lorentz model 
can be straightforwardly achieved by an array of wire 
elements into which cuts are periodically introduced.  The 
effective permittivity for the cut-wire medium, then, has 
the form, 

 ( )
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where the plasma frequency, pω , and the resonance 

frequency, 0ω , are determined only by the geometry of 
the lattice rather than by the charge, effective mass and 
density of electrons, as is the case in naturally occurring 
materials.  For 0 pω ω ω< <  the permittivity is negative 
and, because the resonant frequency can be set to virtually 
any value in a metamaterial, phenomena usually 
associated with optical frequencies—including negative 
ε—can be reproduced at frequencies as low as a few 
MHz. Structures are often designed with continuous wires 
so that 0 0ω = .   

The path to achieving magnetic response from 
conductors is slightly different.  From the basic definition 
of a magnetic dipole moment, 
 1

2
V

dV= ×∫m r j  

we see that a magnetic response can be obtained if local 
currents can be induced to circulate in closed loops 
(solenoidal currents).  Moreover, introducing a resonance 
into the element should enable a very strong magnetic 
response, potentially one that can lead to a negative µ .   

In 1999, John Pendry and his colleagues2. proposed a 
variety of structures that, they predicted, would form 
magnetic metamaterials.  These structures consisted of 
loops or tubes of conductor with a gap inserted.  From a 
circuit point of view, a time varying magnetic field 
induces an electromotive force in the plane of the element, 
driving currents within the conductor.  A gap in the plane 
of the structure introduces capacitance into the planar 
circuit, giving rise to a resonance at a frequency set by the 
geometry of the element.  This split ring resonator (SRR), 
in its various forms, can be viewed as the metamaterial 
equivalent of a magnetic atom.  John Pendry. went on to 

Figure 1. Top panel: an example of a metamaterial 
used in microwave experiments. The unit cells comprise 
a split ring resonator and a wire spanning the cell, just 
visible on the reverse of the supporting sheets. Middle 
panel: schematic variation of ,ε µ  with frequency.  The 
broad green and blue bands denote negative regions for 
ε  and µ  respectively and the red band marks where 
the refractive index is predicted to be negative. Bottom 
panel: The transmitted power spectra3 shown here are 
for (green) a metamaterial of cut wires; (blue) a 
metamaterial of split ring resonators (SRRs); and (red) a 
metamaterial of wires and SRRs combined. 
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Figure 2. A negative index implies negative 
refraction. Top left: in this simulation5 of a Snell’s law 
experiment, a negative index wedge 1.0, 1.0ε = − µ = −  
deflects an electromagnetic beam by a negative angle 
relative to the surface normal, so that it emerges on 
the same side of the surface normal as the incident 
beam, confirming negative refraction. Top right: by 
contrast a wedge with positive index 2.0, 1.0ε = µ =  will 
positively refract the same beam.  Experiments also 
confirm this behavior.  Red lines trace the path of the 
beams, and the surface normal is shown in black. 
Bottom left: deflection observed for a negative wedge.  
Bottom right: deflection (horizontal axis) observed for a 
Teflon wedge as a function of frequency (vertical axis). 
Note that in former case there is strong dispersion with 
frequency because the condition 1.0, 1.0ε = − µ = −  is 
realized only over a narrow bandwidth around 12GHz. 

show that the SRR medium could be described by the 
resonant form 

 ( )
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The wire medium and the SRR medium represent the two 
basic building blocks—one electric the other magnetic—
for a large range of metamaterial response, including 
Veselago’s hypothesized material (see figure 1). 

 
Negative refraction 
Maxwell’s equations determine how electromagnetic 
waves propagate within a medium and can be solved to 
arrive at a wave equation of the form, 

 
( ) ( )2 2
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In this equation ε  and µ  enter as a product and it would 
not appear to matter whether the signs of ε  and µ  were 
both positive or were both negative.  Indeed, solutions of 
the wave equation have the form ( )exp i nkd t⎡ ⎤−ω⎣ ⎦  where 

n = εµ  is the refractive index. Propagating solutions 
exist in the material whether ε  and µ  are both positive or 
are both negative.  So what, if anything, is the difference 
between positive and negative materials? 

It turns out that we need to be more careful in taking 
the square root, as ε  and µ  are analytic functions that are 
generally complex valued.  There is an ambiguity in the 
sign of the square root that is resolved by a proper 
analysis.  For example, if instead of writing 1ε = −  and 

1µ = −  we write ( )exp iε = π  and ( )exp iµ = π , then: 

  ( ) ( ) ( )exp 2 exp 2 exp 1n i i i= εµ = π π = π = − . 
The important step is that the square root of either ε  or µ  
alone must have a positive imaginary part—this is 
necessary for a passive material.  This briefly stated 
argument shows why the material Victor Veselago 
pondered years ago is so unique: the index of refraction is 
negative.  

A negative refractive index implies that the phase of a 
wave decreases rather than advances with passage through 
the medium.   

As Victor Veselago pointed out, this fundamental 
reversal of wave propagation contains important 
implications for nearly all electromagnetic phenomena.  
Many of the exotic effects of negative index have been or 
are currently being pursued by researchers.  But perhaps 
the most immediately accessible phenomenon from an 
experimental or computational point-of-view is the 
reversal of wave refraction, illustrated in figure 2. 

Snell’s law, which describes quantitatively the 
bending of a wave as it enters a medium, is perhaps one of 
the oldest and most well known of electromagnetic 
phenomena.  In the form of a wedge experiment, as 
depicted in figure 2, Snell’s law is also the basis for a 
direct measurement of a material’s refractive index.  In 

this type of experiment, a wave is incident on the flat side 
of a wedge shaped sample.  The wave is transmitted 
through the transparent sample, striking the second 
interface at an angle.  Because of the difference in 
refractive index between the material and free space, the 
beam exits the wedge deflected by some angle from the 
direction of incidence.   

One might imagine that an experimental 
determination of Snell’s law should be a simple matter; 
however, the peculiarities of metamaterials add a layer of 
complexity that renders the experimental confirmation 
somewhat more difficult. Present samples, based on SRRs 
and wires, are frequency dispersive with fairly narrow 
bandwidths and exhibit considerable loss.  The first 
experiment showing negative refraction was performed in 
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2001 by Shelby et al. at UCSD4 who devised an 
experiment similar to that depicted in figure 2.  Shelby et 
al. measured the power refracted from a two-dimensional 
wedge metamaterial sample as a function of angle, 
confirming the expected properties. 

While the UCSD data were compelling, the concept 
of negative index proved counter-intuitive enough that 
many other researchers needed further convincing.  In 
2003, Andrew Houck and colleagues6 at MIT repeated the 
negative refraction experiment on the same sort of 
negative index metamaterial, confirming the original 
findings.  The MIT group considered wedges with 
different angles, showing that the observed angle of 
refraction was consistent with Snell’s law for the 
metamaterial.  In the same year the results were also 
confirmed by Claudio Parazzoli et al. 7 at Boeing Phantom 
Works, in a separately designed sample. The distance 
measured from the sample was significantly larger than 
for previous demonstrations. 

While it has proven a valuable concept, a rigorously 
defined negative index-of-refraction may not necessarily 
be a prerequisite for negative refraction phenomena.  An 
alternate approach to attaining negative refraction uses the 
properties of ‘photonic crystals’8,9 - materials that lie on 
the transition between a metamaterial and an ordinary 
structured dielectric. Photonic crystals derive their 
properties from Bragg reflection in a periodic structure 
engineered in the body of a dielectric, typically by drilling 
or etching holes. The periodicity in photonic crystals is on 
the order of the wavelength, so that the distinction 
between refraction and diffraction is blurred.  
Nevertheless, many novel dispersion relationships can be 
realized in photonic crystals, including ranges where the 
frequency disperses negatively with wave vector as 
required for a negative refraction. Using the photonic 
crystal concept focusing has been observed10,11, as is 
predicted for negative index materials. 

The concept of negative refraction has also been 
generalized to transmission line structures, common in 
electrical engineering applications. By pursuing the 
analogy between lumped circuit elements and material 
parameters, George Eleftheriades and coworkers12 have 
demonstrated negative refraction phenomena in 
microwave circuits – see the next section.  The 
transmission line model has proven exceptionally valuable 
for the development of microwave devices: Tatsuo Itoh 
and Christophe Caloz at UCLA have applied the 
transmission line model to develop novel microwave 
components, including antennas, couplers and resonators. 

These experiments and applications have shown that 
the material Victor Veselago hypothesized more than 
thirty-five years ago can now be realized using artificially 
constructed metamaterials, making discussion of negative 
refractive index more than a theoretical curiosity.  The 

question of whether such a material can exist has been 
answered, turning the development of negative index 
structures into a topic of materials—or metamaterials—
physics.  As metamaterials are being designed and 
improved, we are now free to consider the ramifications 
associated with a negative index-of-refraction.  This 
material property, perhaps because it is so simply stated, 
has enabled the rapid design of new electromagnetic 
structures—some of them with very unusual and exotic 
properties. 
 

 

Figure 3. Metamaterials enable lightweight 
compact lenses to be designed that are relatively free 
of aberration. The practicality of negative index lenses 
has been demonstrated by researchers at Boeing, 
Phantom Works.  Applying the same basic elements 
previously used to construct the metamaterials shown 
in figure 1, Claudio Parazzoli and his colleagues13 
have designed a concave lens with an index very near 
to 1n = −  at microwave frequencies (~15 GHz).  Top 
panel: a positive index lens (in this case 2.3n = ) with 
focusing pattern shown on the right. Middle panel: an 

1n = −  lens having the same radius-of-curvature, and 
its focusing pattern on the right. The metalens is much 
lighter than the positive index lens, a significant 
advantage for aerospace applications and note the 
much shorter focal distance, although both lenses 
have the same radius of curvature. The lower panel 
shows some details. Left: unit cell of the metamaterial; 
right: picture of the lens. 
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A better focus with negative index 
Refraction is the phenomenon responsible for lenses and 
similar devices that focus or shape radiation.  While 
usually thought of in the context of visible light, lenses are 
utilized throughout the electromagnetic spectrum, and 
represent a good starting point to implement negative 
index materials. 

In his early paper, Victor Veselago noted that a 
negative index focusing lens would need to be concave 
rather than convex.  This would seem to be a trivial 
matter, but there is, in fact, more to the story.  For thin 
lenses, geometrical optics—valid for either positive or 
negative index—gives the result that the focal length is 
related to the radius of curvature of the lens by 

( )1f R n= − .  The denominator in the focal length 
formula implies an inherent distinction between positive 
and negative index lenses, based on the fact that an 

1n = +  material does not refract electromagnetic fields 
while an 1n = −  material does.  The result is that negative 
index lenses can be more compact with a host of other 
benefits, as shown in figure 3. 

To make a conventional lens with the best possible 
resolution a wide aperture is sought. Each ray emanating 
from an object, as shown in Figure 4a), has wave vector 
components along the axis of the lens, 0 coszk k= θ , and 

perpendicular to the axis, 0 sinxk k= θ . The former 
component is responsible for transporting the light from 
object to image and the latter represents a Fourier 
component of the image. For good resolution: the larger 
we can make xk , the better. Naturally the best that can be 
achieved is 0k  and hence the limit to resolution of , 
 0 2k∆ ≈ π = λ  
where λ  is the wavelength. This restriction is a huge 
problem in many areas of optics. Wavelength limits the 
feature size achieved in computer chips, and the storage 
capacity of DVDs. Even a modest relaxation of the 
wavelength limitation would be of great value.  

In contrast to the image, there is no limit to the 
electromagnetic details contained in the object but 
unfortunately not all of them make it across the lens to the 
image. The problem lies with the z  component of the 
wave vector which we can write, 

 2 2
0z xk k k= −  

Evidently for large values of xk , corresponding to fine 
details in the object, zk  is imaginary and the waves decay 

exponentially as 2 2
0exp xk k z⎛ ⎞− −⎜ ⎟

⎝ ⎠
.  

z

1
1
1n

ε → −
µ→ −
→ −

θ

( )0 0cos sinei k z k x tθ+ θ−ω

z

1
1
1n

µ → −
→ −
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c)

d)

Figure 4. Limitation of resolution in lenses. a) Conventional lenses need a wide aperture for good resolution but 
even so are limited in resolution by the wavelength employed. b) The missing components of the image are contained 
in the near field which decays exponentially and makes negligible contribution to the image. c) A new lens made from 
a slab of negative material not only brings rays to a focus but has the capacity d) to amplify the near field so that it 
contributes to the image thus removing the wavelength limitation. However the resonant nature of the amplification 
places severe demands on materials: they must be very low loss.  
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By the time they reach the image they have negligible 
amplitude, figure 4b), and for this reason are commonly 
referred to as ‘the near field’, and the propagating rays as 
‘the far field’. 

If by some magic we could amplify the near fields we 
could in principle recoup their contribution, but the 
amplification would have to be of just the right amount 
and possibly very strong for the most localized 
components. This is a tall order but by a remarkable 
chance the new negative slab lens achieves this feat14. 

In figure 4c) we see rays contributing to the image for 
the negative slab. Just as for the conventional lens, the 
rays only contribute details greater that about half a 
wavelength in diameter. In contrast the behavior of the 
near field is remarkably different as shown in figure 4d). It 
has the capacity to excite short wavelength resonances of 
the negative surface which are akin to the surface 
plasmons familiar on the surfaces of metals such as silver. 
Interaction with the plasmon like excitation kicks the 
decaying wave into the corresponding growing wave and 
the negative medium amplifies the wave, compensating 
for the decay that occurred in an equal thickness of 
vacuum. the resonances have a finite width and therefore 
this super lensing effect is a narrow band phenomenon: 
the requirement of 1, 1= − = −ε µ  can be met only at one 
frequency because negative media are necessarily 

00
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Figure 5. Amplifying the near field: theory (dashed line) 
predicts that thin silver films will transmit amplified 
evanescent waves, at least up to a critical thickness after 
which losses dominate and spoil the resonant effect. 
Amplification factors of around 30×  are achieved before 
collapse. The data points for samples of varying thickness, 
taken from a paper by Nick Fang and colleagues15, agree 
with theory within experimental error. 
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Figure 6. Generalizing the perfect lens: a) an 1n = −  slab draws light to a perfect focus; b) shows how the focus is 
achieved by the negative slab ‘unwinding’ or negating the phase acquired in passing through free space. Green 
arrows show the phase velocity advancing in the positive medium and retreating in the negative medium. c) 
Focusing can occur through two more complex objects provided that one is the inverse mirror image of the other; d) 
a graphical statement of the optical cancellation mirror antisymmetric regions of space optically annihilate one 
another. A negative medium is in effect a piece of optical antimatter. 
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dispersive.  
We stress that in the case of evanescent waves 

amplification does not imply a sustained input of power. 
Evanescent waves carry no power and hence in the 
absence of loss a large amplitude evanescent wave can be 
sustained indefinitely in a purely passive medium. 

For a conventional lens resolution is limited by the 
aperture. Our new lens based on negative materials will 
also in practice have limitations, in this case chiefly due to 
losses. Any real material will always have small positive 
imaginary components to ε  and µ  which represent 
resistive losses in the system and damp the resonances 
responsible for amplifying the near fields. The sharpest 
resonances give the greatest amplification because of their 
high Q factors. This makes them more susceptible to 
energy dissipation: they are the first to be killed by the 
losses and so with increasing loss the resolution is rapidly 
degraded. Nick Fang and colleagues5 have explored these 
effects exploiting the fact that for very small systems 
much smaller than the free space wavelength the electric 
and magnetic fields are independent of one another and 
can be controlled separately. Therefore if we are only 
concerned with the electric fields, µ  is irrelevant and we 
need only to ensure that ε  is negative. 

Silver has a negative real part to ε  and therefore a 
thin film should behave like our negative slab and amplify 
the near field. They experimented on several films of 
different thickness but each time selecting the same xk . 
Their results are seen in figure 5: the film is clearly 
amplifying waves up to a critical thickness, when losses 
intervene and the amplification process collapses. 
nevertheless considerable amplification is possible and 
this leads us to be optimistic that some limited sub-
wavelength focusing can be achieved with silver films.  

Recently reported work from George Eleftheriades’ 
group in Toronto12 has realized conditions for sub-
wavelength focusing in a microwave experiment, 
producing images significantly enhanced by evanescent 
wave amplification. The resolution achieved was 
consistent with losses in the system, indicating that 
reducing the loss would improve resolution even further. 

 
Negative Refraction: Negative Space 
We have seen that a slab of negative material with 

1ε = µ = −  acts like a lens: objects on one side are brought 
to a focus on the other side.  Figures 6a) and b) show that 
as the waves enter the negative medium, their phase  is 
wound backwards as they progress. Overall the slab 
undoes the effect of an equal thickness of vacuum. 
Similarly decaying waves have their amplitude restored by 
passing through the slab. This suggests another view of 
the focusing action, that of the slab annihilating an equal 
thickness of vacuum. Negative media behave like optical 
antimatter.  

In fact the result is more general than this. It has been 
shown16 that two slabs of material optically annihilate if 
one is the negative mirror image of the other. Suppose that 

1
1

ε → −

µ → −
1
1

ε = +
µ = +

1
1
1µ → −

1
1µ = +

2

 

 
 

 
 

Figure 7. An optical paradox. In the top figure ray 
tracing predicts that some rays will be rejected from 
this system even though the mirror theorem predicts 
that all waves should be transmitted. The middle figure 
gives the solution of Maxwell’s equations for a single 
negative cylinder ( )1n = −  and the lower figure the 
solution when the complementary layer is added. In 
the latter figure within the accuracy of the calculation 
all scattering is removed. Colors represent intensity: 
red highest, blue lowest. 
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they meet in the plane 0z = , then at equal and opposite 
distances from this plane: 

 
( ) ( )
( ) ( )

, , , ,

, , , ,

x y z x y z

x y z x y z

ε = −ε −

µ = −µ −
 

We can see why materials with 1ε = µ = −  are so special: 
they annihilate the vacuum. 

In figures 6c) and d) there is an illustration of what 
this might mean. The two media have varying refractive 
indices and in general light does not follow a straight line. 
Nevertheless in each medium complementary paths are 
traced such that the overall phase acquired in the first 
medium is cancelled by the contribution from the second. 
Likewise if the waves have a decaying nature, decay in 
one half would be followed by amplification in the 
second.  

This may seem straightforward but some 
configurations have surprises. Consider figure 7. In the 
top panel the two halves are inverse mirror images as 
required by the theorem, and therefore we expect that 
incident waves are transmitted without attenuation and 
without reflection. Yet a ray tracing exercise holds a 
surprise. Ray 2 in the figure hits the negative sphere and is 
twice refracted to be ejected from the system rather than 
transmitted. The rays are not supportive of our theorem! 
Further investigation shows that the sphere is capable of 
trapping rays in closed orbits, shown by dotted lines in the 
center of the figure. This is the signature of a resonance 
and a clue as to how the paradox is resolved. A full 
solution of Maxwell’s equations shows that when the 
incident light is first switched on the ray predictions are 
initially obeyed. With time some of the incident energy 
will feed into the resonant state in the middle of the 
system which in turn will leak energy into a transmitted 
wave, and a contribution to the reflected wave which 
cancels with the original reflection. As always in negative 
media, resonant states play a central role in their 
properties. 

The two lower panels in the figure show the resulting 
equilibrium solution first with only the negative sphere 
indicating that there is strong scattering, and then with the 
mirror symmetric layer included which within the 
accuracy of our calculation removes the reflected 
contributions and the spurious forward scattering to leave 
transmission unhindered as predicted.  

An interesting question arises if there is absorption in 
the system represented by positive imaginary parts of 
either or both of ε  and µ  . Conditions for the theorem 
may still be satisfied but require that for every instance of 
a positive part to ,ε µ  there is a mirror antisymmetric 
negative ,ε µ  somewhere else in the system. This implies 
that parts of the system must exhibit gain. Loss can only 
be compensated by active amplification with a sustained 
input of power. 

 

Conclusions 
Negative refraction is a subject with constant capacity for 
surprise: innocent assumptions lead to unexpected and 
sometimes profound consequences. This has generated 
great enthusiasm but also controversy yet even the 
controversies have had the positive effect that key 
concepts have been critically scrutinized in the past 18 
months. Finally in the past year experimental data have 
been produced which validate the concepts. As a result we 
have a firm foundation on which to build. Many groups 
are already moving forward with applications. Naturally 
the microwave area has been most productive as the 
metamaterials required are easier to fabricate. We have 
given an illustration of a microwave lens, but novel 
waveguides and other devices are under consideration.  

One of the most exciting possibilities is imaging 
beyond the wavelength limit. Practical applications will  
require low loss materials, a great challenge to the 
designers of new metamaterials. Proposals to employ thin 
silver films as lenses are under investigation in several 
laboratories. Nor are the challenges purely experimental: 
we are not yet done with theory since the assumption of 
negative refraction has many ramifications still being 
explored and which are sure to cast more light on this 
strange but fascinating subject. Not surprisingly many are 
joining the field and 2003 saw over 200 papers published 
on negative refraction. We expect even more in 2004! 

Further reading can be found in a special edition of 
Optics Express17 and in the article by Martin McCall et al18 
. 

 
References 
 1. V.G. Veselago, Soviet Physics USPEKHI, 10, 509 (1968). 
 2. J.B. Pendry, A.J. Holden, D.J. Robbins, and W.J. Stewart, 

IEEE transactions on microwave theory and techniques, 47, 
2075 (1999). 

 3. R.A. Shelby, D.R. Smith, S.C. Nemat-Nasser and S. Schultz, 
Appl. Phys. Lett., 78, 4 (2001).  

 4. R.A. Shelby, D.R. Smith, and S. Schultz, Science 292, 77 
(2001). 

 5. Kolinko, P., and Smith, D.R.,  2003, Optics Express, 11, 640 
(2001). 

 6. A.A. Houck, J.B. Brock, and I.L. Chuang, Phys. Rev. Lett., 
90, 137401 (2003). 

 7. C.G. Parazzoli, R.B. Greegor, K. Li, B.E.C. Koltenbah, and 
M. Tanielian, Phys. Rev Lett., 90, 107401-1 (2003). 

 8. M. Notomi, Phys. Rev., B62, 10696 (2000).  
 9. C. Luo, S.G. Johnson, J.D. Joannopoulos, and J.B. Pendry, 

Opt. Express, 11, 746 (2003). 
10. P. V. Parimi, W. T. Lu, P. Vodo, S. Sridhar, “Photonic 

crystals: Imaging by flat lens using negative refraction,” 
Nature,  426, 404 (2003). 

11. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, C. M. 
Soukoulis, “Subwavelength resolution in a two-dimensional 
photonic-crystal-based superlens,” Phys. Rev. Lett., 91, 
207401 (2003). 

12. A. Grbic, and G.V. Eleftheriades, Phys. Rev. Lett., 92, 
117403 (2004). 

13. C.G. Parazzoli, R.B. Greegor, J.A. Nielson, M.A. 
Thompson, K. Li, A.M. Vetter and M.H. Tanielian, Appl. 
Phys. Lett., to appear (2004). 



http://www.physicstoday.org DRS&JBPsubmit060404.doc at 06/04/2004     page 9 of 9 December 2003    Physics Today 

14. J.B. Pendry, Phys. Rev. Lett., 85, 3966 (2000). 
15. N. Fang, Z. Liu, T.J. Yen, and X. Zhang, Optics Express, 11, 

682 (2003). 
16. J.B. Pendry, and S.A. Ramakrishna, J. Phys. Condensed 

Matter., 14, 6345 (2003). 
17. Focus Issue: Negative Refraction and Metamaterials Opt. 

Express, 11, 639-755 (2003). 
18. M.W. McCall, A. Lakhtakia,  and W.S. Weiglhofer, ‘The 

negative index of refraction demystified’, European Journal 
of Physics, 23,  353 (2002).  

 


