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The propagation of magneto-inductive waves in a one-dimensional array of ‘‘swiss roll’’
metamaterial has been studied. It was found that long-range interactions over the whole of the array
must be included to describe the excitations accurately. Using the dispersion relations deduced from
experimental data on pairs of elements, the coupling coefficients between all the elements in the
array have been determined by matching the experimental and theoretical curves. The relative
amplitudes and phases of the excitations on each element in a 31-member array have been measured
and compared with the theoretical prediction based on the previously derived coupling coefficients.
Excellent agreement between the predicted and measured behavior is found, provided that a full set
of coupling coefficients is used. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1687036#

I. INTRODUCTION

It has long been known1 that the dielectric properties of
an insulator can be changed by incorporating variously
shaped metallic structures~for example, rods, spheres, disks!
within it. These changes are usually modest at microwave
frequencies, but can be quite significant at optical frequen-
cies. More recently, Pendry and co-workers showed2,3 that
radical changes can be obtained, not just in the dielectric
properties, but also in the magnetic characteristics of a ma-
terial, provided that the inclusions have a resonant character.
Such materials are known as metamaterials, and can be de-
signed to be active in the rf and microwave frequency ranges
~typically 1 MHz to 100 GHz!. The magnetic activity occurs
in a frequency range which is related to~but is not identical
to! the resonant bandwidth of the elements. Finite losses re-
duce the magnitude of the changes in permeability, but sub-
stantial effects can still be obtained with practically achiev-
able materials. When both the permittivity and the
permeability are made negative, the refractive index of the
material can be regarded as negative~as shown by Veselago
in 1968!4 leading to some unique properties, e.g., an inverted
Snell’s law,5 and a transverse electromagnetic wave propaga-
tion in which the phase and group velocities are in opposite
directions.

The resonant elements proposed in Ref. 3 for changing
the metamaterial permeability were the split ring resonator

and the swiss roll~essentially a capacitor rolled on a dielec-
tric core as shown in Fig. 1!. Experiments with extended
swiss roll structures6,7 comprised of up to 271 elements,
showed that the resulting metamaterial had a high permeabil-
ity capable of guiding magnetic flux with potential applica-
tions in, for example, magnetic resonance imaging.

A third metamaterial element, a capacitively loaded
loop, was proposed in Ref. 8. It was pointed out there, using
an array of such loops as an example, that a magneto-
inductive ~MI ! wave, due to the magnetic coupling between
the elements, may also be excited by an input rf magnetic
field. The band of frequencies for which these MI waves can
propagate depends on this inter-element coupling: the higher
the coupling, the wider the frequency band. The type of the
wave, whether forward or backward, was shown to depend
on the orientation of the loops. The properties of these waves
were studied in more detail in Ref. 9 and were proven ex-
perimentally for the one-dimensional~1D! case in Ref. 10.
The question then arises: Could the other types of elements,
proposed for magnetic metamaterials, also support MI
waves? Swiss rolls are obvious candidates since, in any ar-
ray, the magnetic field generated by one swiss roll is bound
to induce currents in other swiss rolls of the array. The aim
of the present article is to conduct a detailed experimental
and theoretical study showing the existence of MI waves in a
1D array of swiss rolls.

We first consider the choice of the experiments based on
theoretical considerations; this is discussed in Sec. II. The
experimental setup and the method of measurements are de-a!Electronic mail: michael.wiltshire@imperial.ac.uk
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scribed in Sec. III. The experimental results are presented
and compared with theory in Sec. IV. Our conclusions are
drawn in Sec. V.

II. DETERMINATION OF THE COUPLING
COEFFICIENTS

In our previous work,10 that examined the propagation of
MI waves along a 1D array of capacitively loaded loops, the
comparison between theory and experiment was fairly
straightforward, because only nearest-neighbor interactions
needed to be considered. It is more difficult to make the
comparison in the present case because higher-order cou-
pling is more significant for swiss rolls. They differ from
loops by having a third dimension as well. In the present
case, the aspect ratio~length/diameter! of the swiss rolls is
about 5. Hence, the magnetic field distribution generated by
the swiss rolls is quite different from that of loops: the de-
cline of the magnetic field along the axis of the array is much
slower. This has been well known for a long time in the
related field of solenoids. The influence of the length of the
solenoid on the mutual inductance between two identical so-
lenoids a certain distance apart was studied in detail by those
interested in circuit design. For detailed calculations, see
Ref. 11.

The consequence of the magnetic field decaying slowly
away from each of the elements is that the change of phase
and amplitude along the line cannot be described by nearest-
neighbor coupling alone. Direct coupling between element 0
and elements, a distances•d away~whered is the distance
between the centers of neighboring elements! may also be
important. Such coupling will be referred to ass-order cou-
pling ~note that in this terminology nearest-neighbor cou-
pling appears as first-order coupling!.

Is there a way of directly measuring higher-order cou-
pling? Fortunately, there is. It can be deduced from a set of
‘‘pair’’ measurements in which the array consists of two el-
ements only at a distanceD from each other; the first element
is excited and the relative currents in elements 0 and 1 are

measured by probes as shown in Fig. 2. The ratio between
these two currents turns out to contain all the information
needed. The relationship can be easily derived from the
theory presented in Refs. 8 and 9 as

I 0 /I 152 cosh~~a1 jk !D !, ~1!

wherek is the wave number,a is the attenuation coefficient,
and j 5A21. Since the currents differ from each other both
in phase and amplitude, Eq.~1! is sufficient to determine
both k and a. Note that in the absence of losses, the two
currents represent two points in a pure standing wave, so
they must be either in phase or in antiphase. If the currents
are measured for a range of frequencies, then we can plotk
and a as a function of frequency, and these are none other
than the dispersion characteristics. The theoretical dispersion
characteristic contains three free parameters: the resonant
frequencyv0 , the quality factorQ, and the coupling con-
stantk. Out of these three, the resonant frequency and the
quality factor can be determined~see Sec. III! by measure-
ments on an individual element, so that only the coupling
constantk remains as a free parameter which can be deter-
mined by matching the experimentally obtained dispersion
curve to the theoretical one. If in this pair experimentD
5d, then we measure the first-order coupling coefficient. If
D5sd, we measure thes-order coupling. Thus, a series of
experiments measuring pairs with increasing spacing will al-
low us to determine the coupling constantsk for each order
in turn. These parameters can then be used to derive the
behavior of arrays of rolls, all spaced uniformly apart.

III. EXPERIMENTAL SETUP AND MEASUREMENTS

The individual swiss rolls are resonant elements com-
prised of a spiral of insulated conducting foil tightly wound

FIG. 1. Schematic representation of a swiss roll, showing the conductor/
dielectric laminate wound in a spiral on a central mandrel. When an alter-
nating magnetic field is applied along the axis of the structure, it induces
currents in the spiral. Distributed capacitance in the structure allows the
currents to flow.

FIG. 2. Schematic of experimental layout. The HP4195A network analyzer
drives the 3 mm diameter source loop placed on roll 0. The 3 mm diameter
receiver loop detects the flux emerging from the end of the target roll. The
rolls are configured either as just a pair or as an array.

4489J. Appl. Phys., Vol. 95, No. 8, 15 April 2004 Wiltshire et al.

Downloaded 05 Jun 2006 to 139.91.254.18. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



on a central mandrel. For optimum performance, both the
conductor and the insulating dielectric layer are required to
be as thin as possible, with no lossy glue layer between them.
Espanex SC18-12-00FR12 was selected as the most suitable
available laminate: This consists of 12mm of polyimide and
18 mm of copper. the dielectric has a loss tangent of;0.015
at 10 MHz. 50 mm wide strips of this material were wound
onto 10 mm diameter acetal mandrels~Fig. 1!. 11 turns of
laminate gave an overall diameter of 12 mm and a suitable
resonant frequency. However, because the rolls were hand
made, there was a distribution of resonant frequency that was
broader than the width of any individual resonance. The in-
dividual rolls were, therefore, tuned using a 40 mm wide,
capacitively coupled, Espanex sleeve. This protruded by 10
mm so that the roll and sleeve together were 60 mm long,
and the sleeve length was adjusted so that the combination of
roll and sleeve had a resonant frequencyf 0521.9
60.1 MHz andQ;65. A total of 300 rolls were made;7 of
these, 31 were selected for the present work that had reso-
nant frequencies within a 25 kHz spread.

Two sets of experiments were carried out. In both cases,
the measurements were made using an HP4195A network
analyzer, with 3 mm diameter loops as both the source and
the receiver. Low-noise preamplifiers were used to ensure
that the measured signal was well above the noise floor of
the system~<100 dB!.

In the first set of experiments, we investigated the cou-
pling between a pair of rolls as a function of their separation,
from the nearest neighbor up to 30th neighbor. The rolls
were placed on a polystyrene foam bed with indentations to
maintain the correct positions. One roll was excited by plac-
ing the source loop adjacent to the protruding mandrel, about
3 mm away from the end of the Espanex spiral. The detector
was placed first at the other end of the excited roll, and then
at the end of the second roll. The transmitted amplitude and
phase at each position were recorded at 401 frequency points
in the range of 15–35 MHz, as a function of roll separation
~see Fig. 2!.

The 31 rolls were then laid side-by-side so that their
center-to-center spacing was 12 mm. Once again, the first
roll was excited with the 3 mm diameter source loop, and the
transmitted amplitude and phase were recorded at 401 fre-
quency points in the range of 15–35 MHz by placing the 3
mm diameter receiver loop at each roll in the array in turn
~see Fig. 2!.

IV. COMPARISON BETWEEN THEORY
AND EXPERIMENTS

A. Derivation of coupling parameters

As mentioned in the previous Section, 30 pair measure-
ments altogether were conducted, each one of them for 401
values of frequency. In order to find the dispersion relation-
ships, all we need to do is to invert Eq.~1! which will yield
bothkD andaD as a function of frequency. Conventionally,
we plot v againstkD or aD, and thev versusaD curves
obtained this way are shown as dots in Fig. 3~a! for selected
pair distances betweenD5d and 30d. The attenuation in-
creases steadily with distance, but after the first-neighbor

case, the curves all retain the same shape and the minimum
attenuation occurs at the approximately the same frequency.

The v versuskD curves may be derived in a similar
way. They are shown by circles and squares in Fig. 3~b! for
D5d and 2d, respectively. For larger pair distances all the
way up toD530d, the curves coincide.

The theory used closely follows that for loops developed
in Refs. 8 and 9. The array of loops was regarded there as a
set of coupled resonant circuits and the dispersion character-
istics were derived from that assumption. The only difference
with regard to swiss rolls is that the coupling coefficients
will be different. We may then write the dispersion equation
for the pair experiment~only one single coupling coefficient!
as8,9

I 0 /I 152/k~v0
2/v2211 j /Q!. ~2!

There are three free parameters in this equation: the resonant
frequencyv0 , the quality factorQ, and the coupling con-
stantk. Since it has already been established that swiss rolls
are resonant structures, and their resonant frequency and
quality factor have been determined as 21.9 MHz and 65,
respectively, that leaves only one free parameter, the cou-
pling constant. By matching each of the experimental curves
~dots! in Fig. 3~a! by a theoretical one~solid lines!, the cor-
responding coupling coefficient can be determined. The
match may be seen to be very good near to the resonant
frequency but there is some divergence toward the edges of

FIG. 3. ~a! The frequency variation of the attenuation coefficient derived
from the pair measurements for a number of selected distances. The dots are
values derived from experimental results, whereas the lines are the theoret-
ical curves based on Eq.~1! using the best fitting coupling coefficientsk. ~b!
The frequency variation of the wave number or propagation coefficient. The
symbols~the circles for nearest-neighbor spacing, squares for second- and
further-neighbor spacing! are derived from the experiments; the line from
the theoretical description.
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the band. Considering that the model is a very simple one,
the overall agreement between theory and experiment may
be regarded as good.

The kD versusv curves found experimentally may also
be matched by theoretical ones as shown in Fig. 3~b! by lines
for D5d and 2d. For larger distances, the theoretical curves,
as well as the experimental curves, coincide. The reason for
this is that, once losses dominate, thekD versusv curves
become independent of the coupling coefficient. Under the
assumption of high attenuation the relationship betweenv
andkD can be easily obtained from Eqs.~1! and ~2! in the
simple form

v2/v0
25Q tan~kd!/~Q tan~kd!21!, ~3!

which is clearly independent of the coupling coefficient.
The coupling coefficients determined by the matching

technique are shown in Fig. 4 by a set of circles. As ex-
pected, the higher the order of the coupling, the smaller the
coupling coefficient. Note that, if the distance between the
two elements is large enough, the decay of the coupling co-
efficient should be proportional to the cube of the distance.
This is because, when observed from a sufficiently large dis-
tance, a swiss roll~or a solenoid! appears as an infinitely
small magnetic dipole. The magnetic field in the vicinity of
the swiss roll, as discussed in Sec. II, declines much more
slowly due to the finite length of the element. The dotted
curve in Fig. 4 shows the cubic decline relative to the last
coupling coefficient. It can be clearly seen that the cubic law
starts to become valid at around the 24th element. The curves
shown in Fig. 4 give an indication of the significance of
higher-order coupling.

B. Investigation of array behavior

So far the theory has been quite successful in matching
the pair experimental results, but the real test comes when
we wish to match the experimental results obtained by mea-
suring the phase and amplitude of the current on each of the
elements in a 31-element long array of swiss rolls. We derive
the current by inverting theV5ZI relationship8,9 where

V5~1,0,0,̄ ,0!, ~4!

because only the first element is excited. The impedance ma-
trix, Z, is of the form

Z5F Z0 j vM0,1 ¯ j vM0,30

j vM1,0 Z0 ¯ j vM1,30

] ] � ]

j vM30,0 j vM30,1 ¯ Z0

G , ~5!

whereZ05 j vL11/j vC1R, whereL, C, andR are the in-
ductance, capacitance, and resistance, respectively, of the in-
dividual swiss rolls~all assumed to be identical!, andMm,n is
the mutual inductance between elementm and elementn.
The mutual inductance is related to the coupling coefficients
as

2Mm,n /L5km2n . ~6!

Therefore, once we have determined all the coupling coeffi-
cients, we have also found the values of all the mutual in-
ductances.

We have a matrix of 31331 elements in which each of
the off-diagonal elements was determined by the pair experi-
ment. We invert this matrix, and postmultiply it by the trans-
pose ofV to obtain the 31 complex values for the currents in
the 31 elements. The test of the model is then that these
values~which we shall call the theoretical ones! should agree
with the results of the experiment in which the current is
measured for each of the elements of the 31-element array.
Ideally, the agreement should be close for all 401 values of
frequency. Clearly, if we are to hope for any agreement be-
tween theory and experiment, the pair measurements have to

FIG. 4. The values of the 30 coupling coefficients derived from the pair
measurements~circles!. The dotted line is a guide for the eyes. The full line
shows the inverse cube relationship, normalized to the 30th coefficient.

FIG. 5. Amplitude and phase variation along the array at 21.0 MHz. The
circles are experimental values, and the lines show the theoretical values
when up to 1, 10, 20, and 30 coupling coefficients are taken into account.
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be of very high accuracy and the theoretical model has to be
accurate enough to yield the right coupling coefficients.

Figures 5 and 6 show the comparisons with the experi-
mental results. Let us first take a frequency,f 521.0 MHz,
below the resonance. The measured phase and amplitude of
the currents at each element, normalized to the first one in
the array, are shown by circles in Figs. 5~a! and 5~b!. There
are four theoretical curves plotted, taking into account up to
1, 10, 20, and 30 coupling coefficients, respectively. The
remarkable conclusion, which applies both to the phase and
amplitude, is that a theory taking into account the first 10
coupling coefficients can only match the experiments for the
first 11 elements. With 20 coupling coefficients, one can
achieve matching for 21 elements; in order to be able to
match the results for all the 31 elements, all 30 coupling
coefficients are required. It can be regarded as a real triumph
of both the theoretical model and of the accuracy of the
experiments that we have good agreement in amplitude over
a range of 80 dB. It turns out the agreement is not quite as
good when the phase variation along the array is faster. We
shall, therefore, restrict the comparison to a range of 60 dB
in amplitude and, for simplicity, we shall show the results in

the complex plane~note that the radial coordinate is on a
logarithmic scale covering three orders of magnitude!. The
experimental~open circles! and theoretical~filled circles! re-
sults are shown in Figs. 6~a!–6~c! for f 522, 22.5, and 23
MHz, respectively. In each case, we have good quantitative
agreement. Note that the phase progression with frequency in
these plots shows a backward wave behavior.

V. CONCLUSIONS

We have investigated the magneto-inductive wave exci-
tations running along 1D arrays of swiss rolls. These waves
are governed by the coupling between the elements of the
array, i.e., the mutual inductance between various pairs of
rolls. Unlike our previous study, when the elements were
resonant loops and nearest-neighbor coupling sufficed to pro-
vide a good description, we find here that long-range inter-
actions have to be included. A separate experiment, involv-
ing only two elements, was performed in order to derive the
coupling coefficient between any two elements of the array.
We find that these coefficients fall off quite slowly as a func-
tion of distance, only tending asymptotically to inverse cube
behavior for.24th-neighbor spacing. The key point here is
that the rolls are extended resonators, and only at large sepa-
ration is the point dipole behavior recovered. This, of course,
is well known from the mutual inductance of finite
solenoids.11

The theoretical treatment of the arrays is based on a
model8,9 in which the swiss rolls are regarded as coupled
resonators, using the coupling coefficients derived above. A
comparison of the theoretical and experimental results has
shown good agreement across the whole frequency range of
interest~results are plotted at 21, 22, 22.5, and 23 MHz! and
for amplitude changes covering a range of about 60 dB.

A remarkable feature of the array, in contrast to any
other array we have come across, is the relevance of the
higher-order coupling between the elements which is due to
the fact that the magnetic field generated by a swiss roll
decays relatively slowly away from the element. It has been
shown that for determining the complex current in a 31-
element array, none of the 30 coupling coefficients can be
disregarded.

In conclusion, we have shown that, provided the correct
set of coupling coefficients is used, the MI wave formalism
accurately describes the propagation of an rf excitation along
an array of swiss roll elements.
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FIG. 6. Complex amplitude of currents along the array, normalized to that at
element zero, at~a! 22.0 MHz, ~b! 22.5 MHz, and~c! 23.0 MHz. The
experimental points are denoted by open circles, the theory by filled circles.
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