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Abstract. In an earlier paper we introduced the concept of the perfect lens
which focuses both near and far electromagnetic fields, hence attaining perfect
resolution. Here we consider refinements of the original prescription designed
to overcome the limitations of imperfect materials. In particular we show that a
multilayer stack of positive- and negative-refractive-index media is less sensi-
tive to imperfections. It has the novel property of behaving like a fibre-optic
bundle but one that acts on the near field, and not just the radiative component.
The effects of retardation are included and minimized by making the slabs
thinner. Absorption then dominates image resolution in the near field. The
deleterious effects of absorption in the metal are reduced for thinner layers.

1. Introduction
Conventional optics is a highly developed subject but has limitations of

resolution owing to the finite wavelength of light. It has been thought impossible
to obtain images with details finer than this limit. Recently it has been shown that a
‘perfect lens’ is in principle possible and that arbitrarily fine details can be resolved
in an image provided that the lens was constructed with sufficient precision. The
prescription is simple: take a slab of material, of thickness d, and with electrical
permittivity and magnetic permeability given by

" ¼ �1; � ¼ �1: ð1Þ

Given that these conditions are realized, the slab will produce an image of any
object with perfect resolution. The key to this remarkable behaviour is that the
refractive index of the slab is

n ¼ ð"�Þ1=2 ¼ �1: ð2Þ

It was Veselago [1] in 1968 who first realized that negative values for " and � would
result in a negative refractive index and he also pointed out that such a negative-
refractive-index material would act as a lens (figure 1) but it took more than 30
years to realize the concept of negative refractive index at microwave frequencies
[2–5].
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It was only in recent times [6] that the lens’s remarkable property of perfect
resolution was noted. For the first time there is the possibility of manipulating the
near field to form an image. The physics of a negative refractive index has caught
the imagination of the physics community as evidenced by the publications in the
past 2 years [4–15].

Although the conditions for a perfect lens are simple enough to specify,
realizing them is in practice rather difficult. There are two main obstacles. Firstly,
the condition of negative values for " and � also implies that these quantities
depend very sensitively on frequency so that the ideal condition can only be
realized at a single carefully selected frequency. Secondly, it is very important that
absorption, which shows up as a positive imaginary component of " or �, is kept to
a very small value. Resolution of the lens degrades rapidly with increasing
absorption. It is the objective of this paper to explore how the effects of absorption
can be minimized.

Let us probe a little deeper into the operation of the perfect lens. Any object is
visible because it emits or scatters electromagnetic radiation. The problem of
imaging is concerned with reproducing the electromagnetic field distribution of
objects in a two-dimensional (2D) plane in the 2D image plane. The electro-
magnetic field in free space emitted or scattered by a 2D object (x–y plane) can be
conveniently decomposed into the Fourier components kx and ky and polarization
defined by �:

Eðx; y; z; tÞ ¼
X

kx;ky;�

E�ðkx; ky; kzÞ exp ½iðkxx þ kyy þ kzz � !tÞ�; ð3Þ

where the source is assumed to be monochromatic at frequency !,
k2

x þ k2
y þ k2

z ¼ !2=c2 and c is the speed of light in freespace. Obviously, when we
move out of the object plane, the amplitude of each Fourier component changes
(note the z dependence) and the image becomes blurred. The electromagnetic field
consists of a radiative component of propagating modes with real kz; and a near-
field component of non-propagating modes with imaginary kz whose amplitudes
decay exponentially with distance from the source. Provided that kz is real,
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Figure 1. A negative-refractive-index medium bends light to a negative angle relative to
the surface normal. Light formerly diverging from a point source is set in reverse
and converges back to a point. Released from the medium the light reaches a focus
for a second time outside the medium.



!2=c2 > k2
x þ k2

y, it is only the phase that changes with z and a conventional lens is
designed to correct for this phase change. The evanescent near-field modes are the
high-frequency Fourier components describing the finest details in the object and
to restore their amplitudes in the image plane requires amplification, which is of
course beyond the power of a conventional lens and hence the limitations to
resolution (figure 2).

Thus the perfect lens performs the dual function of correcting the phase of the
radiative components as well as amplifying the near-field components, bringing
them both together to make a perfect image, thereby eliminating the diffraction
limit on the image resolution. In general the conditions under which this perfect
imaging occurs are

"� ¼ �"þ; �� ¼ ��þ; ð4Þ

where "� and �� are the dielectric permittivity and magnetic permeability respect-
ively of the negative refractive material slab, and "þ and �þ are the dielectric
permittivity and magnetic permeability respectively of the surrounding medium.

An important simplification of these conditions can occur in the case when all
length scales are much less than the wavelength of light. Under these circum-
stances, electric and magnetic fields decouple: the P-polarized component of light
becomes mainly electric in nature, and the S-polarized component mainly mag-
netic. Therefore in the case of P-polarized light we need only require that " ¼ �1,
and the value of � is almost irrelevant. This is a welcome relaxation of the
requirements especially at optical frequencies where many materials have a
negative values for " but show no magnetic activity. We shall concentrate our
investigations on these extreme near field conditions and confine our attention to
P-polarized light.

In section 2, we investigate the properties of a layered structure consisting of
extremely thin slabs of silver and show that layered structures are less susceptible
to the degrading effects of absorption than are single-element lenses. In section 3,
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Figure 2. The near-field component of an object needs to be amplified before it can
make its contribution to an image. This can be done by resonantly exciting surface
plasmons on the right-hand surface. The condition n ¼ �1 ensures existence of
surface plasmon modes at the operating frequency.



we present some detailed calculations of how the multilayer lens transmits the
individual Fourier components of the image.

2. The layered perfect lens, an unusual effective medium
Reference to figure 2 shows that extremely large amplitudes of the electric field

occur within the lens when the near field is being amplified. This is especially true
for the high-frequency Fourier components which give the highest resolution to
the image. Unless the lens is very close to the ideal lossless structure, these large
fields will result in dissipation which will stop the amplifying effect. However,
there is a way to restructure the lens to ameliorate the effects of dissipation. We
observe that in the ideal lossless case we can perfectly well divide the lens into
separate layers, each making its contribution to the amplification process
(Shamomina et al. have made a similar observation and Zhang and Fu [15] have
considered a similar system [15]). Provided that the total length of vacuum
between the object and image is equal to the total length of lens material, the
lens will still work and produce a perfect image. However, this subdivision of the
lens makes a large difference as to how the lens performs when it is less than ideal
and absorption is present. The point is that, by distribution of the amplification,
the fields never grow to the extreme values that they do when the lens is a single
slab and therefore the dissipation will be much less. Figure 3 illustrates this point.

First let us estimate the resolution of a lens constituted as a single slab.
According to our original calculations [6] in the near-field limit, the transmission
coefficient through the lens for each Fourier component is

exp ½�2ðk2
x þ k2

yÞ
1=2 d�

1
4 ð" 00

�Þ
2 þ exp ½�2ðk2

x þ k2
ydÞ1=2�

; ð5Þ

where

"� ¼ " 0
� þ i" 00

�:
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Figure 3. Schematic diagram of the field distribution for an incident evanescent wave
on a layered perfect lens, when the original lens is cut into three pieces placed
symmetrically between object and image.



Obviously when

ðk2
x þ k2

yÞ
1=2 d < ln

" 00
�
2

� �
; ð6Þ

the lens’ power to amplify begins to fall away. Fourier components of higher
spatial frequency do not contribute and hence the resolution is limited to

D ¼ 2pd

ln ð" 00
�=2Þ : ð7Þ

The easiest way to investigate the properties of a layered system is to recognize
that, provided that the slices are thin enough, it will behave as an effective
anisotropic medium whose properties we calculate as follows (figure 4). Applying
a uniform displacement field D perpendicular to the slices gives electric fields of
"�1

0 "�1
þ D and "�1

0 "�1
� D in the positive dielectric medium and in the negative

material of the lens respectively. Therefore the average electric field is given by

hEi ¼ 1
2
ð"�1

0 "�1
þ D þ "�1

0 "�1
� DÞ ¼ "�1

0 "�1
z D; ð8Þ

where

"�1
z ¼ 1

2
ð"�1

þ þ "�1
� Þ; ð9Þ

is the effective dielectric function for fields acting along the z axis. By considering
an electric field along the x axis we arrive at

"x ¼ 1
2
"þ þ "�ð Þ; ð10Þ

where "x is the effective dielectric function for fields acting along the x axis. We
have assumed for simplicity that the thicknesses of all material components are the
same, but it is also possible to have unequal thicknesses. Now under the perfect
lens conditions, "� ¼ �"þ, we have

"z ! 1; "x ! 0: ð11Þ
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Figure 4. In the extreme we can cut the lens into very many thin slices so that we
reduce the effects of absorption as much as possible. In the limit of infinitesimal
slices the ensemble can be treated as an effective medium with an anisotropic
dielectric function.



Thus the stack of alternating extremely thin layers of negative- and positive-
refractive-index media in the limiting case when the layer thickness goes to zero
behaves as a highly anisotropic medium.

Radiation propagates in an anisotropic medium with the following dispersion:

k2
x þ k2

y

"z
þ k2

z

"x
¼ !2

c2
; ð12Þ

and hence for the perfect lens conditions it is always true that

kz ¼ 0: ð13Þ

Each Fourier component of the image passes through this unusual medium
without change in phase or attenuation. It is as if the front and back surfaces of
the medium were in immediate contact.

Here we have a close analogy with an optical fibre bundle where each fibre
corresponds to a pixel and copies the amplitude of the object pixels to the image
pixels without attenuation and with the same phase change for each pixel,
preserving optical coherence. Our layered system performs exactly the same
function with the refinement that in principle the pixels are infinitely small, and
the phase change is zero. In figure 5 we illustrate this point with an equivalent
system: an array of infinitely conducting wires embedded in a medium where
" ¼ 0. In the latter case it is more obvious that an image propagates through the
system without distortion.Indeed in the trivial zero frequency limit the system
simply connects object to image point by point.

Returning to our point that the layered system reduces the effect of absorption,
we estimate the transmission for P-polarized light through such a system in the
near-field limit as

TP 
 1

cos ½ði=2Þ" 00
�kx2d� þ 1

2
ð"þ þ "�1

þ Þ sin ½ði=2Þ" 00
�kx2d�

: ð14Þ

Evidently, for small values of kx, the transmission coefficient is unity and these
Fourier components contribute perfectly to the image but, for large values of kx,
transmission is reduced. We estimate the resolution limit to be
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Figure 5. An array of very closely spaced infinitely conducting wires, embedded in a
medium where " ¼ 0, behaves in the same manner as the stack of very thin sheets
shown in figure 4.



D ’ 2p
kmax

¼ 2pð1
2
" 00
�2dÞ ¼ 2p" 00

�d: ð15Þ

Therefore the smallest detail resolved by the lens decreases linearly with decreas-
ing absorption (" 00

�). In contrast the original single slab of lens had a much slower
improvement in resolution, being inversely as ln ð" 00

�Þ. Thus it appears to be the
case that two lenses are better than one but many lenses are the best of all.

3. Image simulations for a multilayer stack
In the previous section we gave some qualitative arguments as to the properties

of metal-dielectric multilayer stacks and is clear that for P-polarized light in the
quasistatic limit this structure would behave as a near-perfect ‘fibre optic bundle’.
In the electrostatic (magnetostatic) limit of large kx � kz � qz, there is no effect of
changing �(") for the P(S) polarization. The deviation from the quasistatic limit
caused by the non-zero frequency of the electromagnetic wave would, however,
not allow this decoupling. When the effects of retardation are included, a mismatch
in the " and � from the perfect-lens conditions would always limit the image
resolution and also leads to large transmission resonances associated with the
excitation of coupled surface modes that could introduce artefacts into the image
[16]. For the negative dielectric (silver) lens, the magnetic permeability � ¼ 1
everywhere, and this is a large deviation from the perfect lens conditions. The
dispersion of these coupled slab plasmon polaritons and their effects on the image
transfer has been extensively studied in [13].

Essentially, for a single slab of negative dielectric material which satisfies the
conditions for the existence of a surface plasmon on both the interfaces, the two
surface plasmon states hybridize to give an antisymmetric and a symmetric state,
whose frequencies are detuned away from that of a single uncoupled surface state.
The transmission as a function of the transverse wave-vector remains reasonably
close to unity up to the resonant wave-vector for the coupled plasmon state, after
which it decays exponentially with larger wave-vectors. The secret for better image
resolution is to obtain a flat transmission coefficient for as large a range of wave-
vectors as possible. This is possible by using a thinner slab in which case the
transmission resonance corresponding to a coupled slab mode occurs at a much
larger kx. For the transfer of the image over useful distances, we would then have
to resort to a layered system of very thin slabs of alternating positive and negative
media.

Let us now consider a layered system consisting of thin slabs of silver (negative
dielectric constant "�) and any other positive dielectric medium ("þ). Since the
dielectric constant of silver is dispersive{, we can choose the frequency ! of the
electromagnetic radiation so as to satisfy the perfect lens condition at the interfaces
between the media ð"�ð!Þ ¼ �"þð!ÞÞ. We use the transfer matrix method [17] to
compute the transmission through the layered medium as a function of the
transverse wave-vector at a frequency at which the perfect lens condition is
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yAn empirical form for the dielectric constant of silver in the visible region of the
spectrum is "�ð!Þ ¼ 5:7 � 9:02ð�h!Þ�2 þ i0:4 ð�h! in electron volts). The imaginary part can
be taken to be reasonably constant in this frequency range. We note, however, that the
imaginary part of the effective dielectric constant can be higher for very thin slabs owing to
enhanced effects of surface scattering of the electrons.



satisfied. We shall denote by N the number of slabs with negative dielectric

constant in the alternating structure, each period consisting of a negative and

positive slab as shown in figure 4. Now the total length of the system is 2d ¼ N
,
where 
 is the period of the multilayer stack (the negative and positive slabs being

of equal thickness 
=2). Note that the total thicknesses of positive and negative

dielectric media between the object plane to the image plane are also equal.

The transmission across the multilayer system is shown in figure 6, where the

thicknesses of the individual slabs is kept constant, but the number of layers is
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Figure 6. The transmission coefficient as a function of kx, for the metal–dielectric
multilayer stack. "þ ¼ 1:0, " 0

� ¼ �"þ and 
 ¼ 20 nm. The graphs on the left are for a
hypothetical lossless medium and on the right for silver with " 00

� ¼ 0:4. The layer
thickness is kept constant and the number of layers increased.



increased, thereby increasing the total length of the system. We obtain divergences

in the transmission at wave-vectors corresponding to the coupled plasmon

resonances. The number of the resonances increases with increasing number of

layers, corresponding to the number of surface modes at the interfaces. For the

system with the (hypothetical) lossless negative media, one notes that, as we

increase the number of layers, the transmission coefficient is almost constant and

close to unity with increasing kx, until it passes through the set of resonances and

decays exponentially beyond. The range of kx for which the transfer function is

constant is independent of the total number of layers and depends only on the

thickness of the individual layers, which sets the coupling strength for the plasmon

states at the interfaces. In the presence of absorption in the negative medium,

however, the decay is extremely fast for the system with larger N simply as a

consequence of the larger amount of absorptive medium present. Also note that the

absorption removes all the divergences in the transmission. As noted by us in

earlier publications, the absorption is actually vital in this system to prevent the

resonant divergences which would otherwise create artefacts that dominate the

image.

Next we keep the total length of the stack fixed and change the number of

layers. In the lossless case, the range of kx for which there is effective amplification

of the evanescent waves simply increases with reducing layer thickness as can be

seen in figure 7. Of course, the number of transmission resonances which depend

on the number of surface states increases with increasing number of layers. With

absorptive material, however, the transmission decays faster with kx for larger kx in

the case of the thicker slabs (10 nm) than in the case of the thinner slabs (5 nm).

This reconfirms our analytical result that the effects of absorption would be less
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deleterious for the image resolution in the case of thinner layers. Note that the total

amounts of absorptive material in this case are the same in both the cases.

In any case, the absorption in the negative dielectric (metal) appears to set the

ultimate limit on the image resolution in this case of the layered medium. We have

noted earlier in [13] that the effects of absorption could be minimized by using a

large dielectric constant, GaAs, say ("þ ¼ 12), for the positive medium and tuning

to the appropriate frequency where the perfect lens condition " 0
� ¼ �"þ is satisfied

for the real part of the dielectric constant " 0
� of the metal. In the case of silver, the

imaginary part of the permittivity or the absorption is reasonably constant (about

0.4) over the frequency range of interest. Hence, it is immediately seen that the

fractional deviation from the perfect lens condition in the imaginary part is smaller

when the real part of the permittivity is large and hence the amplification of the

evanescent waves becomes more effective. Now we show the transmission obtained

across a multilayer stack where "þ ¼ 12 and "� ¼ �12 þ i0:4, corresponding to

alternating slabs of silver and GaAs, in figure 8. We must first note that the

wavelengths of light at which the perfect lens condition for the permittivity of

silver is satisfied are different in the two cases. Using the empirical formula for the

dispersion of silver, we obtain " 0
� ¼ �1 at 356 nm and " 0

� ¼ �12 at 578 nm. In

figure 8, for the lossless system, the transmission resonances appear to occur at

higher values of kx=k0 for the high-index system, but it must be realized that

k0 ¼ 2p=� is smaller in this case and the corresponding image resolution would

actually be lower. However, when we compare the transmission with absorption

included, the beneficial effects of using the larger value of the dielectric constant

become obvious. The transmission coefficient indeed decays much more slowly

with increasing kx in this case. Also note that we have taken the source to be in air

and the image to be formed inside the high-index dielectric medium.
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Finally, we compare the images formed by a single-slab lens and a layered lens,

silver being the lens material in both cases. Assuming invariance along the y axis

(line sources) for simplicity, if EsðkxÞ is the Fourier spectrum of the field distri-

bution on the object plane and TLðkxÞ is the transmission function for transfer to

the image plane, then the field distribution at the image plane is given by

EiðxÞ ¼
X
kx

exp ðþikxxÞTLðkxÞEsðkxÞ: ð16Þ

We show in figure 9 the images of two slits of 30 nm width and a peak-to-peak

separation of 90 nm obtained by using a single slab of silver as the lens and a

layered medium of alternating layers of silver and a positive dielectric medium as

the lens. The total distance from the object plane to the image plane in both cases

is 2d ¼ 80 nm. The images of the slits in the case of the single-slab lens are just

resolved, whereas the images of the slits are well separated and clearly resolved

in the case of the layered lens. The enhancement in the image resolution for the

layered lens is obvious from the figure. The bump seen in between the slits is an

artefact arising because the transmission function is not exactly a constant for all

wave-vectors.
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of two slits of 30 nm width and a peak-to-peak separation of 90 nm obtained by
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4. Conclusions

We have elaborated the design of the perfect lens by considering a multilayer

stack and shown that this has advantages over the original configuration of a single

slab of material. In particular the effects of absorption are much reduced by

division into multilayers. The limiting case of infinitesimal multilayers was also

considered and shown to be equivalent to an effective medium through which the

image propagates without distortion as if it were conveyed by an array of very fine

infinitely conducting wires. We went on to make a detailed analysis of how

imperfections in the lens affects the image quality. The effects of retardation and

the coupled slab plasmon resonances can be minimized by considering very thin

layers of 5–10 nm thickness. The effects of absorption then dominate the image

transfer but are less deleterious when the individual layer thicknesses are smaller.

The effects of absorption can also be minimized by using materials with higher

dielectric constants, and tuning the frequency of the radiation to meet the perfect

lens conditions.
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