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Limits on the amplification of evanescent waves
of left-handed materials
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We investigate the transfer function of the discretized perfect lens in finite-difference time-domain (FDTD) and
transfer matrix method (TMM) simulations; the latter allow to eliminate the problems associated with the ex-
plicit time dependence in FDTD simulations. We also find that the finite discretization mesh acts like imagi-
nary deviations from u=e=-1 and leads to a crossover in the transfer function from constance to exponential
decay around k| .« limiting the attainable super-resolution. We propose a simple qualitative model to describe
the impact of the discretization. | ;5 is found to depend logarithmically on the mesh constant in qualitative
agreement with the TMM simulations. © 2006 Optical Society of America

OCIS codes: 160.4670, 260.5740.

1. INTRODUCTION

The ability of the left-handed finite slab with a homoge-
neous permeability u=-1 and permittivity e=-1 to form
a perfect lens (PL) has received much attention since first
proposed by Pendry.1 Such a slab does not only compen-
sate the phase of the propagating waves emanating from
a point source to form a focus on the opposite side of the
slab. It also amplifies the evanescent waves, which decay
exponentially in vacuum into exponentially growing solu-
tions inside the slab. In this way all the source ampli-
tudes reemerge in the focus. The immediate consequence
of this behavior is that the resolution of the image may
overcome the diffraction limit. Soon after, it was
realized®? that the restoration of the evanescent waves by
the PL is exceptionally sensitive to small deviations from
p=e=-1. The transfer function of the PL, defined by the
amplitude ratio of a plane wave component at the focus
and the source, is, in the ideal case, unity for all  and &
up to infinity. For the near-perfect lens it exposes an order
of unity (o(1)) behavior at small parallel momenta k|
which turns into exponential decay ~e~*I? for large k).
The crossover between o(1) behavior and exponential de-
cay for a given PL defines a maximum parallel momen-
tum k| .y, which qualitatively constitutes the highest
evanescent wave still restored by the PL, hence, defines
the maximum attainable sub-wavelength resolution
Axppin~ 27/ k| may- For small deviations pu=e=-1+7y with
ve C,|y|<1 from the ideal PL a logarithmic dependence
k| maxd ~—log|y| of the crossover momentum has been
found.? Here and throughout the paper we employ a di-
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mensionless formulation measuring all lengths in units of
the linear size L of the unit cell and all frequencies in
units of the vacuum speed of light divided by L. In par-
ticular, this renders the dimensionless vacuum speed of
light ¢=1 and wavelength A\=27/w.

2. DISCUSSION

Almost all numerical investigations of the PL’s imaging
properties deploy finite-difference time domain (FDTD)
simulation using a time and space discretized version of
the Maxwell equations. After a few contradictory
publications,‘l_6 Rao and Ong7’8 established the amplifica-
tion of the evanescent waves inside the LH material slab
and the crossover behavior in the transfer function nu-
merically for the FDTD method. They also observed the
occurrence of surface plasmons, ie. local field enhance-
ment, at the first interface for the slightly lossy PL. The
FDTD simulations of the PL suffer from explicit time de-
pendence. Since the time domain simulations involve a fi-
nite time window from the “switch-on” to the actual mea-
surement of the fields, the results are obtained as a
superposition of a finite width w-distribution around the
target frequency wy, which narrows as the simulation
time increases. The corresponding transfer function
trptp(wg) differs considerably from the stationary
(frequency-domain for a single frequency w) transfer func-
tion t.(w). In conjunction with the physically always
present dispersion w(w), e(w) of the left-handed material
this leads to a possible coupling to the surface plasmons’
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on both interfaces of the slab, which in turn causes con-
vergence problems in the FDTD. The FDTD only con-
verges for the near-perfect lens where the surface plas-
mons are damped by the small imaginary part in the LH
slab.®10 If we approach the ideal PL, the FDTD ceases to
converge, which renders the method unusable.

Due to the existence of surface plasmons at the LH slab
the transfer function of the near-perfect lens includes
poles along the surface plasmon dispersion relation!®1!
which can be approximated by ~tanh(kjd/2)=-1+1y for k|
well above the propagating modes. By virtue of the LH
materials dispersion relation this essentially real y di-
rectly translates into a frequency deviation from wy. The
poles approach w, exponentially for growing k. For small
k| the poles of the surface plasmons are usually outside
the finite width w-distribution, we find convergence of the
FDTD and the transfer function is dominated by the sta-
tionary transfer function #..() at wy. For large k| the poles
are exponentially damped in all lossy cases and cease to
contribute either. However, for intermediate &= k| .y the
surface plasmon poles constitute the principal contribu-
tion to tgprp(wp). This leads to non-convergence of the
FDTD due to the emerging “beating pattern”, modulated
by the frequency difference of the two surface plasmon
branches as explained by Gémez-Santos. 10 As we empha-
size here, this also explains the unexpected peak
trpTD(®) > 1 around & .y in the FDTD transfer function
found by Rao and Ong8 and also confirmed by our own
FDTD simulations using periodic boundary conditions
with a single plane wave as well as absorbing boundary
conditions (PML) with a Gaussian beam. The observed
behavior is qualitatively independent of the boundary
conditions provided the sample is large enough. The peak
originates from the contribution of the diverging #..(wpe)
to the magnitude of tpprp(wg) because of the finite-width
w-distribution in the FDTD. Analytically we would expect
a monotonous transition from the o(1) behavior below the
crossover momentum below k| .« to exponential decay
above for the near-perfect lens.

In general we are interested in the stationary case
transfer function ¢..(k, w,d) of the PL as this allows us to
estimate the imaging properties. The field components in
the focus are given by the field components in the source
as

Efocus(kuat) = f dw tac(kH: w)Esource(kH)g(wy wO)eXp(th) s

where g(w,wg) is the frequency distribution around the
frequency of the point source due to the switch-on of the
source and the finite observation time window. Eq,urce(k))
and g(w,wy) are parameters of the setup and measure-
ment, only ¢..(k|, w) is an intrinsic property of the lens. In
the FDTD this stationary transfer function t..(k|,w) is
only accessible via the temporal Fourier transform of the
simulation results, which is neither convenient nor espe-
cially robust against numerical error.

In contrast, the transfer matrix method (TMM) simula-
tions provide a means to directly obtain the stationary
transfer function for a single frequency. We can simulate
transmission and reflection amplitudes as well as the spa-
tial field distribution without the artifacts of finite time
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Fig. 1. (Color online) The distribution of the electric field in TE
mode is shown from source (z=0) to focus (z=12) across the loss-
less (a) and lossy (b) perfect lens for successively finer discretiza-
tion. The left-hand slab between the interfaces at z=3 and z=9
has u=g=-1 for the lossless PL and u=e=-1+v with y=0.03:
for the lossy PL. We discretized using a uniform cubic mesh with
a linear resolution ranging from 214 to 12857 mesh points per
vacuum-wavelength. The curves for 12857 mesh points practi-
cally coincide with the expected analytical result.

simulations. In order to eliminate the effect of numerical
error we employ an arbitrary-precision implementation of
the TMM described for instance in Ref. 12 with quasi-
periodic boundary conditions.

Figure 1(a) shows the TMM simulated spatial field dis-
tribution for the parallel component of the E field in TE
polarization across a PL for one particular evanescent
wave component with £|=1.89 w and several spatial dis-
cretizations ranging from 214 to 12857 linear mesh points
per vacuum-wavelength. The LH slab extends from z=3
to z=9, which corresponds to a thickness of 0.28\. The
vertical solid lines indicate the interfaces. The source is
located at z=0 and we get an image at z=12. Note that
despite the elimination of the explicit time-dependence of
the FDTD simulations we still observe unexpected field
enhancement at the first interface of the PL. These arti-
facts are easily associated with the finite discretization
leading to reflection of incident evanescent modes at the
first interface. Only for very fine discretization meshes
the field distribution approaches the analytically expected
zig-zag-form featuring a minimum at the first interface.
For coarse discretizations we observe a prominent maxi-
mum at the first interface accompanied by (almost) zeros
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of the fields before and after the interface indicating a
phase shift of the response of the interface. In Fig. 1(b) we
show the corresponding field distributions for the lossy
PL where a small imaginary part y=0.03: is added to the
permeability and permittivity of the LH slab. Again we
observe the field enhancement at the first interface, but
the zeros of the field have disappeared. However, in this
case the behavior is dominated by the losses in the LH
slab and the dependence on the discretization is much
weaker. The observed dependence on the imaginary part
for fixed discretization (not shown) confirms previous re-
sults obtained from FDTD simulations.”

For the lossy PL there is a simple physical explanation
for the reflection of evanescent waves and the occurrence
of surface modes at the first interface: For the evanescent
waves in vacuum between source and first interface k| is
real and %, purely imaginary. Whenever the PL involves
an (causal) imaginary part or the evanescent solutions on
the right hand side of the slab couple to propagating
modes or are subject to absorption, electromagnetic field
energy is dissipated in the system. This energy has to be
provided by the source and transmitted across the
vacuum gap before the PL. Although it is well known that
a single evanescent wave cannot transmit energy, this is
not true for a superposition A ' k)4 B gitkj-k)r of jp.
coming and reflected evanescent wave component. The
general equation for the time-averaged Poynting vector
for the TE mode inside the vacuum slab is

Lk kAP
(S)rg =Im(AB") +—3 —exp[-2Im(k,r)]
op  oul| 2
BE
+ ?exp[+ 2Im(k r)]+Re(AB") (1)

and similarly for the TM mode. Considering the first term
it is immediately clear that in order to have an energy
current normal to the interface across the gap, Im(AB")
and thus the reflection at the first interface has to be non-
zero. Note that this even applies to the ideal PL if we have
an outgoing energy current or dissipation on the right
hand side of the lens.

Now we shall consider the transfer function ¢..(%, w,d)
of the PL with and without losses from source to focus as
obtained by the TMM. In Fig. 2 we show the dependence
of the transfer function for a fixed frequency w=3/10 on
the parallel momentum k| for several spatial discretiza-
tions for the lossless PL and two lossy PLs with imagi-
nary parts y=0.0027 and y=0.005 i added to both the per-
meability and the permittivity of the LH slab. Let us first
consider the lossless PL represented by the dashed lines
in both panels. For all discretizations there is clear evi-
dence for a crossover from o(1) behavior to exponential
decay in the k& dependence of the transfer function. The
crossover occurs monotonously without a peak near, | .y
and k| .y increases with finer spatial discretization. This
indicates that the discretization mesh constant acts like
an effective imaginary part in a continuous lossy PL. For
the lossy discretized PL, i.e., adding an explicit imaginary
part y, we observe the same qualitative behavior. Here
the crossover is determined by both discretization and the
losses due to the explicit imaginary parts. For small y and
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coarse discretization the behavior of the transfer function
is entirely dominated by the finite discretization: the lossy
PL virtually coincides with the transfer function for the
lossless PL. For successively finer discretizations y starts
to dominate the behavior, leading to a saturation of the
discretization dependence of | . at a value determined
by vy. These results show that for a given lossy PL there is
always a minimum discretization mesh constant where
the transfer function “converges”, ie. becomes indepen-
dent of the discretization. For the simulated lossless per-
fect lens the crossover in the transfer function due to the
discretization becomes the primary limiting factor for the
observation of sub-wavelength resolution. In Fig. 3 we
show the dependence of the crossover momentum & yax
on the discretization for the lossless and two lossy
0.28\-PLs at w=3/10 as extracted from the data pre-
sented in Fig. 2. It is evident that for the lossless PL over
a wide range of discretizations % ;,,x increases logarith-
mically with the linear number of mesh points per
vacuum wavelength. For the lossy cases this slow in-
crease saturates at a finite k| 5, which in turn decreases
with increasing deviation y from the lossless case. In or-
der to achieve a moderate five-times better resolution
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Fig. 2. (Color online) The transfer function from source to focus
is shown for the lossy PL (symbols) with u=e=-1+ vy for two dif-
ferent small imaginary parts y=0.002: (a) and y=0.005: (b) and
different discretizations. The dashed lines show the correspond-
ing transfer function for the lossless PL. We discretized using a
uniform cubic mesh with a linear resolution ranging from 643 to
51429 mesh points per vacuum-wavelength. The additional
rightmost dashed line corresponds to 102858/\.
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Fig. 3. (Color online) The logarithmic scaling of the crossover
parallel momentum %, with the number of linear mesh points
per vacuum-wavelength is shown for the lossless (y=0) and two
lossy PLs with y=0.002i and y=0.005:. The dotted line is a fit
k| maxd=(24/27)log(4\/Nyyeq) for the lossless PL.

than the one provided by the propagating modes alone for
the d=0.28\ lossless PL, we have to push the discretiza-
tion to a ridiculously high value of 10° linear mesh points
per vacuum wavelength. Such discretization mesh densi-
ties are easily limited by the available computer power.

The effect of the discretization can be qualitatively un-
derstood in terms of a simple model. In the standard dis-
cretization of the Maxwell equations the E and H field
components are assigned to the links of two mutually
dual lattices.® As a consequence, a wave traveling to-
wards the surface of a discretized homogeneous slab will
first “see” the electric response and approximately half a
mesh step later the magnetic response (or vice versa, de-
pending on the material discretization and definition of
the interface). This can be analytically modeled assuming
a continuum lossless PL with u=e=-1 to be sandwiched
between two thin layers with u=—e=1 and —u=e=1, re-
spectively. The thickness & of the surface layers shall be of
the order of the discretization mesh constant. Now we can
derive the leading order S-corrections to the transfer func-
tion analytically using the transfer matrix technique. We
can calculate the total transfer matrix of the left-handed
slab (79) wrapped in surface layers (7,73) and the two
surrounding vacuum slabs (7) as

Timaging = 70(0)[73(9) 75(d) 71() ] 79(a). (2)

For the transfer matrix of an homogeneous slab in wave
representation we find

- (ai(ab Bi- d))
T B al-d)
with the elements
i 1
a;(d) = cos(k;d) + 5(4 + Z)sin(kid), (3)
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i 1
Bi(d) = —<§i - _>Sin(kid)- (4)
2 &
The {i are defined as §i=//«ik0/(l’~0ki) or §i=80ki/(8ik0) for
the TE and TM mode, respectively; indices zero refer to
quantities in vacuum. The transfer function coincides

with the transmission coefficient ¢ (we choose ¢_ for con-
venience) of the imaging scattering matrix Simaging

=[ 7'imaging] ’
[1+o0(8)]explikyla +b)]
t = - )
cos(kod) + [1 + #(—j‘:’kﬁ)]i sin(kod)

(5)

We immediately recognize that the surface correction
St/ (w2—kf)=52w4/k§ in the denominator acts like an
imaginary part in the permeability or permittivity of the
near perfect lens. If the perfect lens condition a+b=d is
satisfied, we have t_=(1+0(5))/(1+wk;%(1-e 2k2d)),
Let us now consider the transfer function for evanescent
waves, i.e. k> w. Then &, is purely imaginary such that
the second term in the denominator is always positive
and the transfer function has no poles. If &w'k;%(1
—e7%kad) <1, je. for small k), we can neglect the
S-correction in the denominator and find an o(1) behavior
of the transmission function. In the opposite limit of large
k| we can neglect the one in the denominator and find the
transfer function decaying exponentially with ked. The
asymptotic exponential decay ¢_ ~kﬁ/ (P w*)exp(-2kd)
can be used to define the crossover momentum £, ,.d=
—log(w?8/kp,y), which has an explicit solution in terms of
the product-log function,

Epaxd = - W(= 026d) ~ - log 6, (6)

for small é. Since & is assumed to be of the order of the
discretization mesh constant, this qualitatively repre-
sents the logarithmic dependence on the discretization ob-
server in the TMM study above.

3. CONCLUSION

In conclusion we investigated the transfer function of the
discretized perfect lens by means of FDTD and TMM
simulations. The TMM has the advantage of computing
the transfer function directly in (k|,w)-space as well as
eliminating the problems associated with the explicit time
dependence in the FDTD simulations. We argue that the
peak observed near k|, in the FDTD transfer function
is due to finite time artifacts; it does not exist in the TMM
simulations. Further we found that the finite discretiza-
tion mesh acts like an imaginary deviation from the w
=g=-1 of the PL and leads to a crossover in the transfer
function from o(1) to exponential decay around a maxi-
mum parallel momentum k)|, limiting the attainable
super-resolution of the PL. We propose a simple qualita-
tive model to describe the impact of the discretization in
terms of effective thin u-only and e-only surface layers ex-
posed by the discretized LH slab which have a thickness &
that is of the order of the discretization mesh constant.
k| ,maxd is found to depend logarithmically on the mesh
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constant in qualitative agreement with the TMM simula-
tions. Since virtually all simulations solve discretized
Maxwell equations, they are all subject to this restriction.
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