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Abstract: A slab of negatively refracting material is known to focus light 
and if 1n = −  the focussing will be perfect, producing an image which is an 
exact replica of the object. Magnifying the image requires a new design 
concept in which the surface of the negatively refracting lens is curved. 
Here we show how a hollow cylinder of material can be designed to 
magnify an image but otherwise with the same perfection as the original 
lens. Curvature requires that ε  and µ  are now a function of position. 
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1. Introduction 

Some time ago Veselago [1] observed that a slab of material with,  

 1, 1ε = − µ = −  (1) 

would have refractive index 1n = − and behave as a lens. The negative refractive index was 
subsequently confirmed by Shelby, Smith and Schultz in 2001 [2]. A further remarkable 
property of this new type of material was later pointed out  [3]: the property that the focussing 
is perfect provided that condition (1) is met exactly. Materials that approximate the properties 
demanded can now be designed both in respect of negative ε  [4, 5, 6] and negative µ  [5, 6, 9, 
10]. It has even proved possible to realise these conditions through photonic structures [11].  

Building on the perfect lens theory [7] we exploited conformal transformations to bend 
the shape of the perfect lens into other geometries such as two concentric cylinders or 
alternatively two touching cylinders. See Figs. 1 and 2. The objective was to make a 
magnifying glass, and for this purpose a lens must be curved. The conformal transformation,  

 ' lnz z=  (2)  

where z x iy= + resulted in a cylindrical lens which reproduced the contents of the smaller 
cylinder in magnified but undistorted form outside the larger cylinder. This transformation 
preserves the solutions of Laplace’s equation and leaves the values of ,ε µ , the electrical 
permittivity/magnetic permeability, unchanged in their respective domains. However 
Laplace’s equation is a valid description of the fields only in the electrostatic or magnetostatic 
limit where the electric and magnetic fields separate. Lenses defined by conformal 
transformations are only valid provided that all dimensions are much less than the wavelength 
of light which is a somewhat limiting condition. Fortunately there exists a more general theory 
of arbitrary coordinate transformations [13] which enables us to make an exact transformation 
of the original planar lens into a perfect lens of almost any geometry we choose, provided that 
we adjust ,ε µ  accordingly.  
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Fig. 1. The annular lens produces a magnified image  of internal objects, 
and a demagnified image of external objects. The magnifying factor is 

2 2b a . The lens is myopic: only objects closer than 2r b a= can form 

an image inside the annulus. Conversely objects within the annulus and  

closer to the centre than 2r a b=  to the centre will not produce an image 

outside the annulus.  
 

Consider a cylindrical symmetric system in which,  
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Let us define a set of cylindrical coordinates as follows,  

 0 0
0 0cos , sin ,x r e y r e z Z= φ = φ =l l l l  (4)  

From [13] we deduce that in the new frame,  

 1 2 3 1 2 3
2 2

,i i i i
i i

Q Q Q Q Q Q

Q Q
ε = ε µ = µ% %  (5) 

 ,i i i i i iE Q E H Q H= =% %  (6) 

where,  

 
2 2 2

2
i

i i i

x y z
Q

q q q

     ∂ ∂ ∂= + +     ∂ ∂ ∂     
 (7)  

so that,  

 

0 0 0

0 0 0

0

2 22 2
0 0 0 0

2 22 2
0 0

22
0 0

cos sin

sin cos

1Z

Z

Q r e e r e

Q r e e r e

Q

Q Q Q r e

φ

φ

= φ + φ =

= φ + φ =

=

=

l l l l l l

l

l l l l l l

l l

l

l l

l

 (8)  

and from (5), (8),  
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where the l  coordinate is oriented along the radial direction. Now if we make the choice of 

0 1=l  and,  
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then in the Zφl  frame,  
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and hence in the new frame this choice results in specifications for a perfect lens: an object 
located at,  

 ( ) ( )1 0 1 0 0 0ln lnr r a r= <l l l  (12)  

will form an image at,  
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where,  
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This new prescription is almost the same as we arrived at by conformal transformation 

except that ,z zε µ  now depend on the radius as 2r− . The original paper assumed that the 

electric field was confined to the xy plane and therefore zε  was irrelevant. It also assumed the 

electrostatic limit so that now magnetic fields were present and hence zµ  was also irrelevant. 
hence in that limit we retrieve our original result.  

2. A perfect crescent lens 
 

x

y

a b  
Fig. 2. Other lenses with cylindrical geometry are possible. Here we see 
the crescent lens in which the inner and outer surfaces touch at the origin. 

 

In the electrostatic approximation the transformation which gave us the crescent lens was,  

 1'z z−=  (15)  

and the corresponding coordinate transformation would be,  

(C) 2003 OSA 7 April 2003 / Vol. 11,  No. 7 / OPTICS EXPRESS  758
#2054 - $15.00 US Received January 27, 2003; Revised March 06, 2003



 ( ) ( )2 2 2 2' ' ' , ' ' ' , 'x x x y y y x y z z= + = − + =  (16)  

so that,  
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and from (5), (17),  
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Therefore if we choose,  
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ε%  and µ%  revert to the case of the original planar perfect lens so that perfect focussing is again 
achieved.  
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3. Conclusions 

We have seen that a change of geometry can be expressed as a change in ε  and µ . In 

particular a change in geometry can be compensated for  by a reciprocal change in ε  and µ . 
Applying these ideas to the perfect lens generates a whole new class of lens with the same 
remarkable capability to focus at the sub wavelength level. In the examples we present here 
curvature in the xy  plane is compensated for by changes in ,z zε µ  in the direction normal to 
the plane of curvature. This ability to transform a concept from one geometry to another can 
be expected to have applications beyond the present case, for example in the field of photonic 
crystals. 
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