
PHYSICAL REVIEW B 69, 115115 ~2004!
Spherical perfect lens: Solutions of Maxwell’s equations for spherical geometry
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It has been recently proved that a slab of negative refractive index material acts as a perfect lens in that it
makes accessible the subwavelength image information contained in the evanescent modes of a source. Here
we elaborate on perfect lens solutions to spherical shells of negative refractive material where magnification of
the near-field images becomes possible. The negative refractive materials then need to be spatially dispersive
with «(r );1/r andm(r );1/r . We concentrate on lenslike solutions for the extreme near-field limit. Then the
conditions for the TM and TE polarized modes become independent ofm and«, respectively.
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I. INTRODUCTION

The possibility of a perfect lens1 whose resolution is no
limited by the classical diffraction limit has been subject
intense debate by the scientific community during the p
two years. This perfect lens could be realized by using a s
of material with«5m521 where« is the dielectric con-
stant and them is the magnetic permeability. Veselago h
observed2 that such a material would have a negative refr
tive index of n52A«m521 ~the negative sign of the
square root needs to be chosen by requirements of causa!,
and a slab of such a material would act as a lens in tha
would refocus incident rays from a point source on one s
into a point on the other side of the slab~see Fig. 1!. Due to
the unavailability of materials with simultaneously negati
« and m, negative refractive index remained an academ
curiosity until recently when it became possible to fabric
structured metamaterials that have negativee and m.3–5

Most of the negative refractive materials~NRM!, so far, con-
sist of interleaving arrays of thin metallic wires@that provide
negative« ~Ref. 6!# and metallic split-ring resonators@that
provide negativem ~Ref. 7!#. Although some initial concerns
were expressed8 that the observed effects in these expe
ments were dominated by absorption, the recent experim
of Refs. 9–12 have confirmed that negative refractive ma
rials are today’s reality.

It was demonstrated by one of us that the NRM slab a
as a lens not only for the propagating waves~for which the
ray analysis of Veselago is valid! but also for the evanescen
near-field radiation.1 This phenomenon of perfect lensing b
comes possible due to the surface plasmon states13 that re-
side on the surfaces of the NRM slab which restore the
plitudes of the decaying evanescent waves.1,14–18 Indeed, it
has been confirmed by numerical~FDTD! simulations that
an incident pulse is temporarily trapped at the interfaces f
considerable time.19 For a detailed description of the perfe
slab lens, we refer the reader to Refs. 1,17,20. The ‘‘perf
ness’’ of the perfect lens is limited only by the extent
which the constituent NRM are perfect with the specifi
material parameters. Absorption in the NRM and deviatio
of the material parameters from the resonant surface plas
0163-1829/2004/69~11!/115115~7!/$22.50 69 1151
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conditions of the perfect lens causes significant degrada
of the subwavelength resolution possible.14,21–23 We have
suggested some possible measures to ameliorate this d
dation of the lens resolution by stratifying the lens medium24

and introducing optical gain into the system.25 It appears that
obtaining negative refractive materials with sufficiently lo
levels of dissipation will be the greatest challenge. We n
that although the phenomenon of subwavelength focus
using NRM is yet to be experimentally demonstrated, th
is some experimental evidence for the amplification of e
nescent waves26 and we expect that there are good chan
for realizing this using NRM at microwave frequencies.

The image formed by the NRM slab lens is identical
the object and hence there is no magnification in the ima
Lenses are mostly used to produce magnified or demagn
images and the lack of any magnification is a great rest
tion on the slab lens on which most of the attention in t
literature has been focused. The slab lens is invariant in
transverse directions and conserves the parallel compo
of the wave vector. To cause magnification this transve

FIG. 1. Radiation from a point source on one side of a slab
material withi«521 andm521 is refocused into a point on th
other side. The rays representing propagating waves are bent
the other side of the normal at the interfaces due to the nega
refractive index of the slab.
©2004 The American Physical Society15-1
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invariance will have to be broken and curved surfaces n
essarily have to be involved. The perfect lens effect is dep
dent on the near degeneracy of the surface plasmon r
nances to amplify the near field, and curved surfaces
general have completely different surface plasm
spectrum.27 It was recently pointed out by us that a family
near-field lenses~in the quasistatic approximation! in two
dimensions can be generated by a conformal mapping of
slab lens.20 Thus, a cylindrical annulus with dielectric con
stant«521 was shown to have a lens-like property of pr
jecting in and out images of charge distributions. Similarly
Refs. 28 and 29, it was shown how a general method
coordinate transformations could be used to map the pe
slab lens solution for the Maxwell’s equations into a varie
of situations including the cylindrical and spherical geo
etries, respectively.

In this paper, we elaborate on the perfect lens solution
the spherical geometry and show that media with spati

dispersive dielectric constant«(rW);1/r and magnetic perme

ability m(rW);1/r can be used to fabricate a spherical perf
lens that can magnify the near-field images as well. In Se
of this paper, we will present these perfect lens solutions
the Maxwell’s equations for the spherical geometry. In S
III, we will examine the solutions in the extreme near-fie
limit or the quasistatic limit which is useful when the leng
scales in the problem are all much smaller than a wa
length. Then the requirements for TM and TE polarizatio
depend only on«;1/r 2 or m;1/r 2, respectively. This is
useful at frequencies where we are able to generate struc
with only one of« or m negative. We will investigate the
effects of dissipation in the NRM and point out the conne
tions to the one-dimensional~1D! slab lens solutions. We
will present our concluding remarks in Sec. IV.

FIG. 2. A spherical shell with negative«2(r );21/r and
m2(r );21/r images a source located inside the shell into the
ternal region. The media outside have positive refractive index,
«2(r );1/r andm2(r );1/r . The amplification inside the spherica
shell of the otherwise decaying field is schematically shown.
11511
c-
n-
so-
in
n

he

f
ct

-

in
ly

t
II
f
.

-
s

res

-

II. A PERFECT SPHERICAL LENS

Consider a spherically symmetric system shown in Fig
consisting of a spherical shell of NRM with the dielectr
constant«2(r ) andm2(r ) imbedded in a positive refractive
material with«1(r ) andm1(r ). First of all we will find the
general solutions to the field equations with spatially inh
mogeneous material parameters:

“3E5 ivm0m~r !H, “3H52 iv«0«~r !E ~1!

“•D50, “•H50, ~2!

D5«~r !E, B5m~r !H. ~3!

Under these circumstances of spherical symmetry, i
sufficient to specify the quantities (r•E) and (r•H) which
will constitute a full solution to the problem. Let us now loo
at the TM polarized modesr•H50, implying that only the
electric fields have a radial componentEr . Operating on Eq.
~1! by “, we have

“3“3E5 ivm0“3@m~r !H#,

5
v2

c2
m~r !«~r !E1 iv

“m~r !

m~r !
3“3E. ~4!

Using Eqs.~2! and ~3! we have

“•D5“•@«~r !E#5“«~r !•E1«~r !“•E50, ~5!

and if we assume«(r )5«(r ) andm(r )5m(r ), we have

“•E52
«8~r !

r«~r !
r•E52

«8~r !

r«~r !
~rEr !. ~6!

We note the following identities for later use:

“3“3E5“~“•E!2“

2E, ~7!

¹2~r•E!5r•¹2E12“•E, ~8!

and using Eq.~6! we also note that

r•“~“•E!5r•“S 2
«8~r !

«~r !
Er D ,

52r
]

]r S «8~r !

«~r !
Er D ,

52
]

]r S «8~r !

«~r !
~rEr ! D

1S «8~r !

«~r !
Er D . ~9!

We now take a dot product ofr with Eq. ~4!, and use the Eqs
~6!–~9! to get an equation for (rEr) as:

¹2~rEr !1
]

]r F«8~r !

«~r !
~rEr !G1

«8~r !

r«~r !
~rEr !

1«~r !m~r !
v2

c2
~rEr !50. ~10!

-
ut
5-2
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This equation is separable and the spherical harmonics a
solution to the angular part. Hence the solution is (rEr)
5U(r )Ylm(u,f), where the radial partU(r ) satisfies

1

r 2

]

]r S r 2
]U

]r D2
l ~ l 11!

r 2
U1

]

]r F«8~r !

«~r !
UG1

«8~r !

r«~r !
U

1«~r !m~r !
v2

c2
U50. ~11!

If we choose«(r )5ar p and m(r )5br q, we can have a
solutionU(r );r n and we get

@n~n11!2 l ~ l 11!1p~n21!1p#r n22

1abv2/c2r p1q1n50, ~12!

implying p1q522 and

n65 1
2 @2~p11!6A~p11!214l ~ l 11!24abv2/c2#.

~13!

Hence the general solution can be written as

Er~r !5(
l ,m

@n1Almr n1211n2Blmr n221#Ylm~u,f!.

~14!

A similar solution can be obtained for the TE modes w
r•E50.

Now assuming an arbitrary source atr 5a0, we can now
write down the electric fields of the TM modes in the diffe
ent regions for the negative spherical shell of Fig. 2 as

E(1)~r !5(
l ,m

@n1Alm
(1)r n1211n2Blm

(1)r n221#Ylm~u,f!,

a0,r ,a1 , ~15!

E(2)~r !5(
l ,m

@n1Alm
(2)r n1211n2Blm

(2)r n221#Ylm~u,f!,

a1,r ,a2 , ~16!

E(3)~r !5(
l ,m

@n1Alm
(3)r n1211n2Blm

(3)r n221#Ylm~u,f!,

a2,r ,`, ~17!

and similarly for the magnetic fields. Note thatBlm
(1) corre-

spond to the field components of the source located ar
5a0. For causal solutionsAlm

(3)50. Now the tangential com
ponents of the magnetic fields and the normal componen
the displacement fields have to be continuous across th
terfaces. Under the conditionsp521, q521, «1(a1)5
2«2(a1), and«1(a2)52«2(a2), we have

Alm
(1)50, ~18!
11511
e a

of
in-

Alm
(2)5S 1

a1
2D Al ( l 11)2abv2/c2

Blm
(1) , ~19!

Blm
(2)50, ~20!

Blm
(3)5S a2

2

a1
2D Al ( l 11)2abv2/c2

Blm
(1) . ~21!

The lenslike property of the system becomes clear by writ
the field outside the spherical shell as

Er
(3)5

1

r Fa2
2

a1
2

r GAl ( l 11)2abv2/c2

Blm
(1)Ylm~u,f!. ~22!

Hence apart from a scaling factor of 1/r , the fields on the
spherer 5a35(a2

2/a1
2)a0 are identical to the fields on th

spherer 5a0. There is also a spatial magnification in th
image by a factor ofa2

2/a1
2.

Let us note a couple of points about the above perfect l
solutions in the spherical geometry. First, forr .a3, i.e.,
points outside the image surface the fields appear as if
source were located on the spherical image surfacer
5a3). However, this is not true for pointsa2,r ,a3 within
the image surface. Second, given that«2(a2)52«1(a2),
we have the perfect lens solutions if and only ifn152n2

which implies thatp521 in Eq. ~13!. Although the solu-
tions given by Eq.~14! occur in any medium with«m
;1/r 2, the perfect lens solutions only occur for«;m
;1/r . Here we have written down the solutions for the T
modes. The solutions for the TE modes can be similarly
tained.

III. THE SPHERICAL NEAR-FIELD LENS

As it has been pointed out in the preceding section,
‘‘power’’ solutions are good for any«(r );r p and m(r )
;r q such thatp1q522. However, the perfect lens solu
tions for the Maxwell’s equations result only for the sing
case ofp5q521. In the quasistatic limit ofv→0 and l
@upu, uqu, we can relax this condition. In particular, by se
ting «(r );1/r 2 andm(r )5 constant, we can have a perfe
lens for the TM modes alone. Similarly, we can have a p
fect lens for the TE polarization by havingm;1/r 2 and «
5constant.

This extreme near-field limit is both important and val
for situations when all length scales in the problem are m
smaller than a wavelength of the radiation. This becom
useful at frequencies where we can only generate media
either negative« and positivem, or, negativem and positive
«. Examples are the silver slab lens at optical frequenci1

the metamaterials~Swiss rolls! used for magnetic resonanc
imaging at radio frequencies.30 Particularly at radio and mi-
crowave frequencies, we currently can practically engin
the required metamaterials with spatially dispersive char
teristics at the corresponding length scales. Further it a
lifts the restriction that the system has to have a spati
dispersive material parameters even outside the sphe
5-3
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shell of NRM. In this section we will work in this extrem
near-field limit. Then it is sufficient to solve the Laplac
equation and we present lenslike solutions to the Lapl
equation below.

Consider the spherical shell in Fig. 2 to be filled with
material withe2(r );2C/r 2 with the inner and outer region
filled with constant dielectrics of«1 and«3, respectively. Let
m51 everywhere. Now place a charge1q at the center of
the concentric spheres and a charge2q at a distancea0 from
the center inside region 1. We will consider thez axis to be
along the dipole axis and make use of the azimuthal sym
try here, although it is clear that our results do not depend
any such assumption of azimuthal symmetry. Thus, all
charge and their images will now lie along thez axis.

Now we will calculate the potentials in the three region
which satisfies the Laplace equation and the continuity c
ditions at the interfaces. The potential in region 1 (r ,a1)
can be calculated to be~using the azimuthal symmetry!

V1~r !5
2q

4pe1
(
l 51

` FA1l r
l Pl~cosu!1

a0
l

r l 11
Pl~cosu!G .

~23!

Note that the second term in the above expansion arises
to the dipole within the sphere. It can be shown~see the
11511
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Appendix!, that the general form of the potential in region
(a1,r ,a2) where the dielectric constant varies as 1/r 2 is

V2~r !5
2q

4pe0
(
l 51

` FA2l r
( l 11)Pl~cosu!1

B2l

r l
Pl~cosu!G .

~24!

In region 3 (r .a2), the potential is given by

V3~r !5
2q

4pe3
(
l 51

` F B3l

r l 11
Pl~cosu!G . ~25!

Now we must match the potentials at the interfaces ar
5a1 and r 5a2 ~put e051) to determine theA andB coef-
ficients. The conditions of continuity of the potential and t
normal component ofDW at the interfaces are

V1~a1!5V2~a1!, V2~a2!5V3~a2!, ~26!

e1

]V1~a1!

]r
5e2

]V2~a1!

]r
, e2

]V2~a2!

]r
5e3

]V3~a2!

]r
.

~27!

We determine the coefficients from these conditions to b
A1l5

~ l 11!a0
l H @ l e2~a2!2~ l 11!e3#@e11e2~a1!#2@e2~a2!1e3#@~ l 11!e12 l e2~a1!#

a2
2l 11

a1
2l 11J

l ~ l 11!@e11e2~a1!#@e2~a2!1e3#a2
2l 111@ l e12~ l 11!e2~a1!#@ l e2~a2!2~ l 11!e3#a1

2l 11
, ~28!

A2l5
~2l 11!@ l e2~a2!2~ l 11!e3#a0

l a1
21

l ~ l 11!@e11e2~a1!#@e2~a2!1e3#a2
2l 111@ l e12~ l 11!e2~a1!#@ l e2~a2!2~ l 11!e3#a1

2l 11
, ~29!

B2l5
~2l 11!~ l 11!@e2~a2!1e3#a2

l a0
l a1

2( l 12)

l ~ l 11!@e11e2~a1!#@e2~a2!1e3#a2
2l 111@ l e12~ l 11!e2~a1!#@ l e2~a2!2~ l 11!e3#a1

2l 11
, ~30!

B3l5
~2l 11!2e3e2~a2!a0

l a2
2(l 11)a1

21

l ~ l 11!@e11e2~a1!#@e2~a2!1e3#a2
2l 111@ l e12~ l 11!e2~a1!#@ l e2~a2!2~ l 11!e3#a1

2l 11
. ~31!
Under the perfect lens conditions

«2~a1!52«1 ,

and

«2~a2!52«3 , ~32!

we have

A1l50, ~33!
A2l5
1

«1

a0
l

a1
2(l 11)

, ~34!

B2l50, ~35!

B3l5
«3

«1
S a2

a1
D 2(l 11)

a0
l . ~36!

Hence the potential outside the spherical shell forr .a2 is
5-4
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V3~rW !5
2q

4p«3
(
l 51

`
«3

«1
S a2

a1
D 2(l 11) a0

l

r l 11
Pl~cosu! , ~37!

which is the potential of a dipole with the positive charge
the origin and the negative charge ata3, where

a35S a2

a1
D 2

a0 ~38!

and of strength

q25
«3

«1
S a2

a1
D 2

q5q, ~39!

as «3 /«15(a1 /a2)2. Thus, on one side of the image~the
region r .a3) the fields of a point charge located ata3 are
reproduced. However, it should be pointed out that ther
no physical charge in the image location, and the fields
the other side of the image~i.e., in the regiona2,r ,a3) do
not converge to the fields of the object and cannot do s
the absence of a charge in the image. Further there is
change in the strength of the charge either. There is a m
nification in the image formed by a factor of (a2 /a1)2.

Now let us consider the case of a point source place
a3 in the outer region. Again assuming thez axis to pass
througha3, we can write the potentials in the three regio
as

V1~r !5
1q

4p«1
(
l 50

`

A1l r
l Pl~cosu! ; r ,a1 , ~40!

V2~r !5
1q

4p (
l 50

` FA2l r
l 111

B2l

r l GPl~cosu!

; a1,r ,a2 , ~41!

V3~r !5
1q

4p«3
(
l 50

` F r l

a3
l 11

1
B3l

r l 11GPl~cosu!,

; a2,r ,a3 , ~42!

where the first term inV3(rW) comes from the point source a
a3. Now applying the conditions of continuity at the inte
faces, we can similiarly obtain for the coefficients as befo
In the limiting case of«2(a1)52«1 and«2(a2)52«3, we
have

A1l5
«1

«3
S a2

a1
D 2l 1

a3
l 11

, ~43!

A2l50, ~44!

B2l5
1

«3

a2
2l

a3
2l 11

, ~45!

B3l50. ~46!

Hence the potential inside the inner sphere is
11511
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V1~r !5
q

4p«1
(
l 50

`
«1

«3
S a2

a1
D 2l r l

a3
l 11

Pl~cosu!, ~47!

i.e., that of a point charge of strengthq15(«1 /«3)(a1 /a2)2

5q at a05a3(a1 /a2)2. As before, for the inner region o
r ,a0, the system behaves as if there were a single charg
strengthq located atr 5a0. Thus, the shell has a lenslik
action. We note that there is a demagnification of (a1 /a2)2 in
this case.

A. Similarities to the 1D slab lens

Let us point out the similarities to the planar slab lens.
both cases, the electromagnetic field grows in amplitu
across the negative medium when the perfect lens condit
are satisfied at the interfaces: as an exponential (exp@1kxz#)
in the planar lens and as a power of the radial distancer l in
the spherical lens. The decaying solution away from
source is absent in the negative medium in both cases.
ther, when the perfect lens conditions are matched at both
interfaces, there is no reflected wave in both the planar s
as well as the spherical lens, i.e., the impedance matchin
perfect as well. In addition this mapping preserves
strength of the charge.

The key differences, however, are the different dielec
constants on either side of the spherical shell of the nega
medium. This is a direct consequence of the spatial 1/r 2 de-
pendence of the negative dielectric constant which relates
two positive dielectric constants to bee15(a1 /a2)2e3. But
this need not be a particular restriction as we can use
ideas of the asymmetric lens to terminate the different po
tive media at some radii beyond.17 The net result is that the
image can now be magnified~or demagnified! when the im-
age of the charge~source! is projected out of~or into! the
spherical shell, which is true in the 2D cylindrical lens
well.20

B. Possibility of the asymmetric lens

In the case of a planar slab, it was possible to have
perfect lens effect by satisfying the required conditions
any one interface—not necessarily at both interfaces.17 Par-
ticularly, in the limit of very large parallel wave vectors th
lensing is indeed perfect, although the image intensity d
fered from the source by a constant factor. Similarly let
now investigate the effects of having the perfect lens con
tions in the case of the spherical lens at only one of
interfaces.

Let us consider first, the case of projecting out the ima
of a point source from inside the spherical shell to outs
and enable the perfect lens conditions only at the outer in
face e2(r 5a2)52e3 and have an arbitrarye1. Now theA
andB coefficients come out to be

A1l5
a0

l

a1
2l 11

~ l 11!@«11«2~a1!#

l«12~ l 11!«2~a1!
, ~48!
5-5



el

ld
ni
r
th

pr
o
m
en
ve
ph

w
jus
ti
s
o
ic

ar
e

g
o
tia

av
a

-

o
in
er
ta
ge

can

im-
er-
rge

on.
he
on-
lu-

lens
he

ll
of

ns
e

t

he
ate-
ul-
the
er
et-
,

tion
yet
lv-

ial

e

as

S. ANANTHA RAMAKRISHNA AND J. B. PENDRY PHYSICAL REVIEW B69, 115115 ~2004!
A2l5
~2l 11!a0

l

l«12~ l 11!«2~a1!a1
2l 12

, ~49!

B2l50, ~50!

B3l5
~2l 11!«3a0

l

l«1~a1 /a2!21~ l 11!«3
S a2

a1
D 2l

.

~51!

Only the growing solution within the negative spherical sh
remains. The coefficient of the decaying solution (B2l) re-
mains strictly zero. Thus, amplification of the decaying fie
at least is possible in this case as well. But there is a fi
reflectivity in this case. However, the solution outside for
.a2 is not the exact image field of the point source as
coefficient B3l has an extra dependence onl through the
dependence on the dielectric constants. Moreover, the
cess does not preserve the strength of the charge due t
different dielectric constants involved. This should be co
pared to the solution of the planar asymmetric slab l
where, at least in the electrostatic limit, the system beha
as a perfect lens. In this case, the system behaves as a s
cal asymmetric perfect lens only in the limit of largel→`.
The solution outside the spherical shell is the same when
meet the perfect lens condition on the inner interface—
as in the case of the planar slab lens. However, the reflec
coefficient is again nonzero, but different to the earlier ca
In either case, the fields are largest at the interface where
meets the perfect lens conditions or the interface on wh
the surface plasmons are excited.

C. Effects of dissipation

Media with negative real part of the dielectric constant
absorptive~as all metals are!, and hence we can write th
dielectric constant«(r )5C/r 21 i« i(r ) ~note that« i;1/r 2 as
well for us to be able to write the solution in the followin
form!. Consider the first case of projecting out the image
a dipole located within the spherical shell where the poten
outside the shell is given by Eq.~25! andB3l is given by Eq.
~31!. When we have a dissipative negative medium and h
the perfect lens conditions at the interfaces on the real p
of the dielectric constant alone,«2(a1)52«11 i« i(a1) and
«2(a2)52«31 i« i(a2). In parallel with the case of the pla
nar lens, we note that the denominator ofB3l consists of two
terms, one containing a power of the~smaller! radiusa1 and
the other containing a power of the~larger! radiusa2. Cru-
cially the amplification of the evanescent fields depends
the possibility that the smaller power dominates by mak
the coefficient of the larger term as close as possible to z
The presence of the imaginary part of the dielectric cons
would not allow the coefficient to be zero and the ima
restoration is good only as long as the term containinga1
dominates in the denominator ofB3l , i.e.,

l ~ l 11!« i~a1!« i~a2!a2
2l 11

!@~2l 11!«12 i ~ l 11!« i~a1!#@2~2l 11!«3

1 i« i~a2!#a1
2l 11 . ~52!
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Hence a useful estimate of the extent of image resolution
be obtained by noting the multipolel for which the two terms
in the denominator are approximately equal.14 We obtain for
this value

l max.
ln$3«1«3 /@« i~a1!« i~a2!#%

2ln~a2 /a1!
. ~53!

Higher-order multipoles are essentially unresolved in the
age. We can similarly obtain the same criterion by consid
ing the second case of transferring the image of a cha
located outside the spherical shell into the inner regi
Again, we can consider the effects of deviating from t
perfect lens conditions on the real part of the dielectric c
stant as well and obtain a similar limit for the image reso
tion due to those deviations.

IV. CONCLUSIONS

In conclusion, we have presented a spherical perfect
which enables magnification of the near-field images. T
perfect lens solution requires media with«(r );1/r and
m(r );1/r and the conditions«2(a1,2)52«1(a1,2) and
m2(a1,2)52m1(a1,2) at the interfaces of the spherical she
of the NRM. We have shown that in the quasistatic limit
small frequencies (v→0) and high-order multipolesl
@upu, this condition can be relaxed and the two polarizatio
~TE and TM modes! decouple. Thus, a shell with negativ
dielectric constant«2(r );21/r 2 with m5constant can ac
as a near-field lens for the TM polarization whilem2(r );
21/r 2 with «2(r )5constant acts as a near-field lens for t
TE modes. We have shown that dissipation in the lens m
rial, however, prevents good resolution of higher-order m
tipoles. Thus, while the near-field lenses work best for
higher-order multipoles, dissipation cutsoff the higher-ord
multipoles. Further the spherical lens works in the asymm
ric mode only in the limit of high-order multipoles. Thus
one has to find an intermediate regime where dissipa
does not wipe out the near-field image information and
the metamaterials work. This is the design challenge invo
ing these near-field lenses.

APPENDIX: SOLUTION OF THE LAPLACE EQUATION
IN A SPATIALLY VARYING MEDIUM

We have to solve the Maxwell equations in mater
media

“•D50, ⇒ “~«E!50. ~A1!

UsingE52“V, whereV(r ) is the electrostatic potential w
have:

«~r !¹2V1“«~r !•“V50. ~A2!

If «(r ) has only a radial dependence~as in our case;1/r 2),
then“«(r )5 r̂ (]«/]r ) and we can separate the solution
V(r )5„U(r )/r …Ylm(u,f), where theYlm is the spherical
harmonic and the radial partU(r ) satisfies
5-6
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«~r !
d2U

dr2
2

l ~ l 11!

r 2
U1

d«

dr FdU

dr
2

U

r G50. ~A3!

To have a solution as a single power ofr, the only choices
possible for the dielectric constant are either«5C, a
constant—the usual case, or«5C/r 2. In the latter case the
S

e
s,

E

M

r,

a

11511
solution isU(r );r l 12 or U(r );r 2( l 21). The full solution
can then be written as

V~r !5(
l 50

`

@Almr l 111Blmr 2 l #Ylm~u,f!. ~A4!
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