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Spherical perfect lens: Solutions of Maxwell's equations for spherical geometry
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It has been recently proved that a slab of negative refractive index material acts as a perfect lens in that it
makes accessible the subwavelength image information contained in the evanescent modes of a source. Here
we elaborate on perfect lens solutions to spherical shells of negative refractive material where magnification of
the near-field images becomes possible. The negative refractive materials then need to be spatially dispersive
with e(r)~21/r andu(r)~1/r. We concentrate on lenslike solutions for the extreme near-field limit. Then the
conditions for the TM and TE polarized modes become independentarfd e, respectively.
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[. INTRODUCTION conditions of the perfect lens causes significant degradation
of the subwavelength resolution possiHfé~2®We have
The possibility of a perfect lehsvhose resolution is not suggested some possible measures to ameliorate this degra-
limited by the classical diffraction limit has been subject todation of the lens resolution by stratifying the lens meditim
intense debate by the scientific community during the pasand introducing optical gain into the systénit appears that
two years. This perfect lens could be realized by using a slabbtaining negative refractive materials with sufficiently low
of material withe=u=—1 wheree is the dielectric con- levels of dissipation will be the greatest challenge. We note
stant and theu is the magnetic permeability. Veselago hadthat although the phenomenon of subwavelength focusing
observed that such a material would have a negative refracusing NRM is yet to be experimentally demonstrated, there
tive index of n=—\eu=—1 (the negative sign of the is some experimental evidence for the amplification of eva-
square root needs to be chosen by requirements of caysalitjlescent wavé§ and we expect that there are good chances
and a slab of such a material would act as a lens in that ifor realizing this using NRM at microwave frequencies.
would refocus incident rays from a point source on one side The image formed by the NRM slab lens is identical to
into a point on the other side of the sléee Fig. L Due to  the object and hence there is no magnification in the image.
the unavailability of materials with simultaneously negativeLenses are mostly used to produce magnified or demagnified
e and u, negative refractive index remained an academidmages and the lack of any magnification is a great restric-
curiosity until recently when it became possible to fabricatetion on the slab lens on which most of the attention in the
structured metamaterials that have negat'aland /*L'3_5 literature has been focused. The slab lens is invariant in the
Most of the negative refractive materig/$RM), so far, con-  transverse directions and conserves the parallel component
sist of interleaving arrays of thin metallic wirgthat provide ~ Of the wave vector. To cause magnification this transverse
negatives (Ref. 6] and metallic split-ring resonatofshat
provide negativex (Ref. 7)]. Although some initial concerns
were expressédthat the observed effects in these experi-
ments were dominated by absorption, the recent experiments
of Refs. 9—12 have confirmed that negative refractive mate-
rials are today’s reality.
It was demonstrated by one of us that the NRM slab acts
as a lens not only for the propagating wayés which the
ray analysis of Veselago is valithut also for the evanescent
near-field radiatior}. This phenomenon of perfect lensing be-
comes possible due to the surface plasmon statkat re- i
side on the surfaces of the NRM slab which restore the am- 5

n=-1

/

/

plitudes of the decaying evanescent wat&s:*®Indeed, it
has been confirmed by numeric®DTD) simulations that ) i a2
an incident pulse is temporarily trapped at the interfaces for a Obiect Plane Image plane
considerable timé® For a detailed description of the perfect }

slab lens, we refer the reader to Refs. 1,17,20. The “perfect- FiG. 1. Radiation from a point source on one side of a slab of
ness” of the perfect lens is limited only by the extent to material withie=—1 andu=—1 is refocused into a point on the
which the constituent NRM are perfect with the specifiedother side. The rays representing propagating waves are bent on to
material parameters. Absorption in the NRM and deviationshe other side of the normal at the interfaces due to the negative
of the material parameters from the resonant surface plasmasfractive index of the slab.
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invariance will have to be broken and curved surfaces nec- Il. APERFECT SPHERICAL LENS

essarily have to be involved. The perfect lens effect is depen- Consider a spherically symmetric system shown in Fig. 2
dent on the near degeneracy of the surface plasmon retc‘f,’()nsisting of a spherical shell of NRM with the dielectric

nances to amplify the near fielld, and curved surfaces IRonstants_(r) and_(r) imbedded in a positive refractive
general mwhave completely different surface plasmonyerial withe , (r) andu, (r). First of all we will find the
spectr.u Lt Was.recently po|.nted. out by us tha_t a family of general solutions to the field equations with spatially inho-
near-field lensesin the quasistatic approximatipnn two  mogeneous material parameters:

dimensions can be generated by a conformal mapping of the
slab leng? Thus, a cylindrical annulus with dielectric con- VXE=iopou(nH, VXH=—iwee(nE (1)
stante = —1 was shown to have a lens-like property of pro- B _
jecting in and out images of charge distributions. Similarly in v-D=0, V-H=0, &)
Refs..28 and 29, it was shown how a general method of D=4&(r)E, B=u(r)H. 3)
coordinate transformations could be used to map the perfect
slab lens solution for the Maxwell's equations into a variety Under these circumstances of spherical symmetry, it is
of situations including the cylindrical and spherical geom-sufficient to specify the quantities {E) and (-H) which
etries, respectively. will constitute a full solution to the problem. Let us now look
In this paper, we elaborate on the perfect lens solutions i@t the TM polarized modes-H=0, implying that only the
the spherical geometry and show that media with spatiallyglectric fields have a radial componéft. Operating on Eq.

dispersive dielectric constaa(F)~l/r and magnetic perme- (1) by V, we have

ability ()~ 1/r can be used to fabricate a spherical perfect VXV XE=iwuoV X[ u(r)H],
lens that can magnify the near-field images as well. In Sec. Il
of this paper, we will present these perfect lens solutions of
the Maxwell’s equations for the spherical geometry. In Sec.
[, we will examine the solutions in the extreme near-field
limit or the quasistatic limit which is useful when the length Ysing Egs.(2) and(3) we have

scales in the problem are all much smaller than a wave- V.D=V.[s(r)E]=Ve(r)-E+&(r)V-E=0, (5)
length. Then the requirements for TM and TE polarizations

depend only one~1/r2 or u~1/r2, respectively. This is and if we assume(r)=«(r) and u(r)=u(r), we have
useful at frequencies where we are able to generate structures (1) e'(r)

with only one ofe or u negative. We will investigate the V-E=— r-eE=———(rg,). (6)
effects of dissipation in the NRM and point out the connec- re(r) re(r)

tions to the one-dimensiondlD) slab lens solutions. We We note the following identities for later use:

will present our concluding remarks in Sec. IV.

w? ~ Vu(r)
:?M(r)s(r)E‘FlwwaXE. 4

VXVXE=V(V-E)-VZE, (7
7 V3(r-E)=r-V?E+2V-E, 8
and using Eq(6) we also note that
. rV(VE):rV _wE
e(r) )
a o oar\e(r) )
d [&g'(r)
A - |7
Y ar( e(r) (rE'))
e'(r)
+ WE,_) 9)
We now take a dot product ofwith Eq. (4), and use the Egs.
(6)—(9) to get an equation forrg,) as:
X . Je'(r) &' (1)
FIG. 2. A spherical shell with negative _(r)~—1/f and VA(rg,)+ i (rg)) |+ (rg,)
m_(r)~—1/r images a source located inside the shell into the ex- rier) re(r)
ternal region. The media outside have positive refractive index, but 2
e_(r)~1fr andu_(r)~1/r. The amplification inside the spherical +e(r)u(r) w—(rEr) =0. (10)
shell of the otherwise decaying field is schematically shown. c?
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This equation is separable and the spherical harmonics are a 1 VI(1+1)— aBw?ic?
solution to the angular part. Hence the solution i&,{ A|(2)= il Bl(l) (19)
=U(r)Ym(6,$), where the radial patt)(r) satisfies " o\a? m
19,00 10+1)  dfe'(r) g'(r) U B(?=0, (20)
r2 or ar r2 ar| e(r) re(r) .
a2 VI(1+1)— aBw?lc?
2
w2 B(3)= ( —2> B(Y. (21)
+s(r),u(l’)—2U=O. (11 aj
c

If we choosee(r)=arP and u(r)=pr9% we can have a
solutionU(r)~r" and we get

[n(n+1)—1(1+1)+p(n—1)+p]r" 2
+ aBw?lc?rPTatn=p, (12

implying p+q=—2 and

n.=3—(p+1)=\(p+1)2+4l(1+1)—4aBw?c?].
(13
Hence the general solution can be written as

Er(r>=|2 [N At ™ 240 Bt 1Y (6, ¢).
' (14)

The lenslike property of the system becomes clear by writing
the field outside the spherical shell as

F—
VI(1+1) - apw?lc?

1|a3
E@=2| 22 BUYm(6,¢). (22

rag

Hence apart from a scaling factor ofr L/the fields on the
spherer =a,=(a3/a3)a, are identical to the fields on the
spherer =ay. There is also a spatial magnification in the
image by a factor of3/aZ.

Let us note a couple of points about the above perfect lens
solutions in the spherical geometry. First, fora,, i.e.,
points outside the image surface the fields appear as if the
source were located on the spherical image surface (
=a3). However, this is not true for points,<r <ag within
the image surface. Second, given that(a,)=—¢(a,),
we have the perfect lens solutions if and onlynif=—n_

A similar solution can be obtained for the TE modes withwhich implies thatp=—1 in Eq. (13). Although the solu-

r-E=0.

Now assuming an arbitrary sourcerat ag, we can now
write down the electric fields of the TM modes in the differ-
ent regions for the negative spherical shell of Fig. 2 as

E(l)(r)=;n [n A1 n_ BMr-=11y, (6, 4),
ag<r<a,, (15

E(Z)(r)=;n [N A1 n_B@rn-—1y, (6, 4),
a;<r<a,, (16

E(3)(r)=;n [N AP 14 n_BEr-—11y, (6, 4),
a,<r<w, (17)
and similarly for the magnetic fields. Note tfﬁﬂl) corre-

spond to the field components of the source located at
=a,. For causal solutiona®)=0. Now the tangential com-

tions given by Eq.(14) occur in any medium witheu
~1/r?, the perfect lens solutions only occur fer~ u
~1/r. Here we have written down the solutions for the TM
modes. The solutions for the TE modes can be similarly ob-
tained.

Ill. THE SPHERICAL NEAR-FIELD LENS

As it has been pointed out in the preceding section, the
“power” solutions are good for anye(r)~rP and u(r)
~r9 such thatp+q=—2. However, the perfect lens solu-
tions for the Maxwell’s equations result only for the single
case ofp=qg=—1. In the quasistatic limit oflv—0 andl
>|p|, |q|, we can relax this condition. In particular, by set-
ting e(r)~1/r? and u(r)= constant, we can have a perfect
lens for the TM modes alone. Similarly, we can have a per-
fect lens for the TE polarization by having~1/r? and e
=constant.

This extreme near-field limit is both important and valid
for situations when all length scales in the problem are much
smaller than a wavelength of the radiation. This becomes
useful at frequencies where we can only generate media with
either negative and positivex, or, negativew and positive
e. Examples are the silver slab lens at optical frequerfcies,
the metamaterialéSwiss roll3 used for magnetic resonance

ponents of the magnetic fields and the normal components Gfnaging at radio frequencié8 Particularly at radio and mi-
the displacement fields have to be continuous across the iR¢owave frequencies, we currently can practically engineer

terfaces. Under the conditionz=—1, q=-1, ¢, (a;)=
—&_(a;), ande . (a,)=—¢_(a,), we have

AM=0, (18

the required metamaterials with spatially dispersive charac-
teristics at the corresponding length scales. Further it also
lifts the restriction that the system has to have a spatially
dispersive material parameters even outside the spherical
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shell of NRM. In this section we will work in this extreme Appendi¥, that the general form of the potential in region 2
near-field limit. Then it is sufficient to solve the Laplace (a;<r<a,) where the dielectric constant varies as’lié
equation and we present lenslike solutions to the Laplace
equation below.

Consider the spherical shell in Fig. 2 to be filled with a Vz(r)— E
material withe,(r) ~ — C/r? with the inner and outer regions
filled with constant dielectrics of; ande 3, respectively. Let (24)

=1 everywhere. Now place a chargeg at the center of | region 3 ¢>a,), the potential is given by
the concentric spheres and a chargg at a distance, from

B,
Ayr (P YP (cosh) + — P|(c030)

Ameg (=

the center inside region 1. We will consider thexis to be -q &
along the dipole axis and make use of the azimuthal symme- V3(r)= 57 Pi(cosb) |. (25
try here, although it is clear that our results do not depend on dmes =1 [ r

any such assumption of azimuthal symmetry. Thus, all ou . .
ch;rge and theirFi)mages will now lie Zlong thyaxis Now we must match the potentials at the interfaces at
Now we will calculate the potentials in the three regions, i ~a ‘;’derh_ az (%utt €0~ 1f) to (;Jete{mlr;eﬂ:hé\ e;ndtB lcoe:‘j— th
which satisfies the Laplace equation and the continuity con- icients. The conditions of continuity of the potential and the

ditions at the interfaces. The potential in regionrik@,)  Normal component ob at the interfaces are

can be calculated to b@ising the azimuthal symmefry

| Vi(a)=Va(ay), Vy(ay) =Vs(ay), (26)
ch
Va(r) = 4rre; Z‘ A1|FIP|(COS(9)+EP|(COS¢9) : . dVi(ay) . dVo(ay) . IVy(ay) . Vs(ay)
(23) Loor 2 o 2 or S oo
(27)

Note that the second term in the above expansion arises due
to the dipole within the sphere. It can be shoyaee the We determine the coefficients from these conditions to be

a2|+l
(|+1)alo[[|€2(a2)_(|+1)€3][€1+ fz(al)]_[fz(az)+€3][(|+1)61_|62(3-1)]%
A 28
YT+ e+ eanlena) +eslad e~ (1+ ey Tlex@) - (|+1)53]32|+1 29
(21+1)[ley(ay)— (1 +1)ezlapay *
Ag = 21+1 21+1° (29
I(I+1)[e1+ €ex(ar) ][ €2(az) t€z]a; " “+[leg— (1 +1)ex(ar)][lex(az) — (1 +1)es]ag
(21+1)(1+1)[ ex(ay) + e5]ababa; 172
Ba= I+1 2+1° (30)
I(1+1)[ €1+ ex(a1) [ €x(ap) +€5]a3 "+ [le;— (1 +1)ex(ay) ][l €x(ay) — (1+1) €5]as
(21+1)%ezex(ay)apas *a; !
Bai= 21+1 21+1° (3D
I(I+1)[e1+ €ex(ar) ][ €2(az) te3]a; “+[leg— (1 +1)ex(ar)][lex(az) — (1 +1)eslag
|
Under the perfect lens conditions 1 a|0
2= 5, 20D (34
gy(a;)=—ey, '
and Bx=0, (35
ey(ay)=—esz, (32 esfa Z(Hl)al -
we have 3 lag 0
A, =0, (33 Hence the potential outside the spherical shellrfora, is
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[

—q €3

2l
—7Pi(cost),  (47)
3

a,\20+1) g q * e
: r|+01 (cos6), (37) Vy(r)= > ==

Va(r)= ey (=1 €4 a_l

which is the potential of a dipole with the positive charge at

the origin and the negative chargeaat where i.e., that of a point charge of strength= (¢,/¢3)(a;/a,)?
=q at ap=ag(a,/a,)?. As before, for the inner region of

- a 2a (39) r<ag, the system behaves as if there were a single charge of
3 lay) 70 strengthq located atr =a,. Thus, the shell has a lenslike
action. We note that there is a demagnificationaf/@,)? in
and of strength this case.
2
g3 as
=—|—| q=q, 39
a2 €\a a=a 39 A. Similarities to the 1D slab lens
asesle;=(a,/a,)? Thus, on one side of the imagdthe Let us point out the similarities to the planar slab lens. In

regionr>as) the fields of a point charge located & are  both cases, the electromagnetic field grows in amplitude
reproduced. However, it should be pointed out that there igcross the negative medium when the perfect lens conditions
no physical charge in the image location, and the fields orare satisfied at the interfaces: as an exponential[ (elkga])
the other side of the imagge., in the regiora,<r<agz) do in the planar lens and as a power of the radial distahde
not converge to the fields of the object and cannot do so ithe spherical lens. The decaying solution away from the
the absence of a charge in the image. Further there is neource is absent in the negative medium in both cases. Fur-
change in the strength of the charge either. There is a magher, when the perfect lens conditions are matched at both the
nification in the image formed by a factor odif/a;)?. interfaces, there is no reflected wave in both the planar slab
Now let us consider the case of a point source placed as well as the spherical lens, i.e., the impedance matching is
az in the outer region. Again assuming tleaxis to pass perfect as well. In addition this mapping preserves the
throughaz, we can write the potentials in the three regionsstrength of the charge.
as The key differences, however, are the different dielectric
constants on either side of the spherical shell of the negative
medium. This is a direct consequence of the spatic dé-

Va(r)= dme, 2 Ayr'Pi(cost) ¥ r<ay, (40) pendence of the negative dielectric constant which relates the
two positive dielectric constants to kg=(a;/a,)?e;. But
+q & By this need not be a particular restriction as we can use the
Vo(r)y=—-— 2 AZIr'+1+ —|P,(cosb) ideas of the asymmetric lens to terminate the different posi-
4m =0 tive media at some radii beyorfdThe net result is that the
image can now be magnifigdr demagnifiedlwhen the im-
v a;<r<ap, (41 age of the chargésource is projected out ofor into) the
spherical shell, which is true in the 2D cylindrical lens as
+0 <« | ' By well. %0
Vi(r)= dme, 2 a'3*1+ T P,(cos#),
B. Possibility of the asymmetric lens
v a,<r<as, (42

In the case of a planar slab, it was possible to have the
where the first term |rV3(r) comes from the point source at perfect lens effect by satisfying the required conditions at
az. Now applying the conditions of continuity at the inter- any one interface—not necessarily at both interfdédzar-
faces, we can similiarly obtain for the coefficients as beforeticularly, in the limit of very large parallel wave vectors the
In the limiting case ok,(a;)=—¢4 andey(ay)=—¢e3, we  lensing is indeed perfect, although the image intensity dif-

have fered from the source by a constant factor. Similarly let us
now investigate the effects of having the perfect lens condi-
fa\? 1 tions in the case of the spherical lens at only one of the
A1|=—3 a) a 43 interfaces.
3 Let us consider first, the case of projecting out the image
A=0 (44) of a point source from inside the spherical shell to outside
a7 and enable the perfect lens conditions only at the outer inter-
2l face e,(r =a,) = — €3 and have an arbitrarg;. Now the A
1 a <
B, =_— 2 45 and B coefficients come out to be
2l P (45
€3 aj
By =0. (46) 3y (I+D)[eytes(ay)] 9
o . : U a2+1 g —(I+1)ey(ay)
Hence the potential inside the inner sphere is 1
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(21 + 1)a'0 Hence a useful est_imate of thg extent of jmage resolution can
Ay = S5 (49 be obtained by noting the multipoldor which the two terms
le;—(1+1)ey(ag)as in the denominator are approximately eqtfa¥e obtain for
this value
BZI =01 (50)
| 2l _In{3ee3/[si(ar)ei(ax) 1}
- (21+1)eqzay a | max™ 2In(a,/ay) (53

leq(ag/ay)?+(1+1)eg '\ @1

(52 Higher-order multipoles are essentially unresolved in the im-

Only the growing solution within the negative spherical shell39¢: We can similarly obtain the same criterion by consider-

remains. The coefficient of the decaying solutidBy) re- ing the second case of transferring the image of a charge

mains strictly zero. Thus, amplification of the decaying fieldloca.ted outside the .sphencal shell into th_e Inner region.
inité\gain, we can consider the effects of deviating from the

perfect lens conditions on the real part of the dielectric con-
stant as well and obtain a similar limit for the image resolu-
Sion due to those deviations.

reflectivity in this case. However, the solution outside rfor
>a, is not the exact image field of the point source as th
coefficient B;; has an extra dependence brihrough the
dependence on the dielectric constants. Moreover, the pro-

cess does not preserve the strength of the charge due to the IV. CONCLUSIONS
different dielectric constants involved. This should be com-

pared to the solution of the planar asymmetric slab len? In conclusion, we have presented a spherical perfect lens

hich enables magnification of the near-field images. The
erfect lens solution requires media with(r)~1/r and

,urt'r)~1/r and the conditionse _(a;,)=—¢,(a;,) and

where, at least in the electrostatic limit, the system behave
as a perfect lens. In this case, the system behaves as a sph

cal asymmetric perfect lens only in the limit of larfyes . ng(allz): — i+ (ay) at the interfaces of the spherical shell

The solution outside the sphgrlcal shell IS the same Wher) Pf the NRM. We have shown that in the quasistatic limit of
meet the perfect lens condition on the inner interface—jus : . :
small frequencies ¢—0) and high-order multipoled

as in the case of the planar slab lens. However, the reflectiog| |, this condition can be relaxed and the two polarizations
coefficient is again nonzero, but different to the earlier case Pl P

In either case, the fields are largest at the interface where or{ E and TM modeg decouple. Thus, a shell with negative

. — 2 . —
meets the perfect lens conditions or the interface on whic lelectric cqnstanb,(r) Lir® with K FO”StaT“ can act
the surface plasmons are excited. as a near-field lens for the TM polarization whjle (r)~

—1/r? with £ _(r)=constant acts as a near-field lens for the
TE modes. We have shown that dissipation in the lens mate-

o ] . . rial, however, prevents good resolution of higher-order mul-

Media with negative real part of the dielectric constant argjpoles. Thus, while the near-field lenses work best for the

absorptive(as all metals age and hence we can write the pigher-order multipoles, dissipation cutsoff the higher-order

dielectric constant(r)=C/r?+ie;(r) (note thate;~1r*as  muyltipoles. Further the spherical lens works in the asymmet-
well for us to be able to write the solution in the following ric mode only in the limit of high-order multipoles. Thus,

form). Consider the first case of projecting out the image ofgne has to find an intermediate regime where dissipation

a dipole located within the spherical shell where the potentialjges not wipe out the near-field image information and yet

outside the shell is given by E(R5) andBsy, is given by EqQ.  the metamaterials work. This is the design challenge involv-
(31). When we have a dissipative negative medium and havgg these near-field lenses.

the perfect lens conditions at the interfaces on the real parts
of the dielectric constant alone,(a;)=—¢;+ig;(a;) and
eo(ay)=—e3+igi(a,). In parallel with the case of the pla-
nar lens, we note that the denominatoBaf consists of two
terms, one containing a power of tt@mallej radiusa, and We have to solve the Maxwell equations in material
the other containing a power of tl{largen radiusa,. Cru-  media

cially the amplification of the evanescent fields depends on

the possibility that the smaller power dominates by making V.-D=0, = V(¢E)=0. (A1)
the coefficient of the larger term as close as possible to zero.

The presence of the imaginary part of the dielectric constantisingE= — VYV, whereV(r) is the electrostatic potential we
would not allow the coefficient to be zero and the imagehave:

restoration is good only as long as the term contairaqg

C. Effects of dissipation

APPENDIX: SOLUTION OF THE LAPLACE EQUATION
IN A SPATIALLY VARYING MEDIUM

dominates in the denominator Bf;, i.e., e(r)V?V+Ve(r)-VV=0. (A2)
2141
I(1+1)ei(ay)ei(az)a; " If £(r) has only a radial dependen¢as in our case-1/r?),
<[(2l+De;—i(l+1)ej(an][— (21 +1)es thenVs(r)=?(as/ar) and we can separate the solution as
_ S V(r)=()/r)Y,n(0,¢), where theY,, is the spherical
+igi(ag)]ay . (520 harmonic and the radial patt(r) satisfies
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( )dZU
e(r)—5—
dr?

I(1+1)
2

de
Tar

du U

ar 7%

(A3)

r

To have a solution as a single powerrgfthe only choices
possible for the dielectric constant are eithe=C, a
constant—the usual case, o=C/r2. In the latter case the

PHYSICAL REVIEW B 69, 115115 (2004

solution isU(r)~r'"2 or U(r)~r ==Y, The full solution
can then be written as

V(r>=|§O[A.mr'+1+B.mr—']wm(a,qs). (A4)
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