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We review recent progress in the investigation of man made composites which exhibit negative refrac-
tion of the electromagnetic waves. Results for both left-handed materials (LHM) and photonic crystals
are presented. Experiments on LHM are mostly done in the microwave regime, while on photonic
crystals can be performed in the optical or the far-infrared regime.

1 Introduction

Rapidly increasing interest in the left-handed materials (LHM) started after Pendry et al. predicted
that certain man-made composite structure could possess, in a given frequency interval, a negative
effective magnetic permeability meff [1]. Combination of such a structure with a negative effective
permittivity medium – for instance the regular array of thin metallic wires [2–7] – enabled the con-
struction of meta-materials with both effective permittivity and permeability negative. This was con-
firmed by experiments [8, 9].

Structures with negative permittivity and permeability were named ‘‘left-handed” by Veselago [10]
over 30 years ago to emphasize the fact that the intensity of the electric field E, the magnetic inten-
sity H and the wave vector k are related by a left-handed rule. This can be easily seen by writing
Maxwell’s equation for a plane monochromatic wave:

k� E ¼ wm

c
H and k�H ¼ �wE

c
E : ð1Þ

Once E and m are both positive, then E, H and k form a right set of vectors. In the case of negative E
and m, however, these three vectors form a left set of vectors.

In his pioneering work, Veselago described the physical properties of LH systems: Firstly, the direc-
tion of the energy flow, which is given by the Poynting vector

S ¼ c
4p

E�H ð2Þ

does not depend on the sign of the permittivity and permeability of the medium. Then, the vectors S
and k are parallel (anti-parallel) in the right-handed (left-handed) medium, respectively. Consequently,
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the phase and group velocity of an electromagnetic wave propagate in opposite directions in the left-
handed material. This gives rise to a number of novel physical phenomena, as were discussed already
by Veselago. For instance, the Doppler effect and the Cherenkov effect are reversed in the LHM [10].

If both E and m are negative, then also the index of refraction n is negative [10, 11]. This means the
negative refraction of the electro magnetic wave passing through the boundary of two materials, one
with positive and the second with negative n (negative Snell’s law). Observation of negative Snell’s
law, reported experimentally [12] and later in [13], is today a subject of rather controversially debate
[14–18]. Analytical arguments of the sign of the refraction index were presented in [11]. Numerically,
negative phase velocity was observed in FDTD simulations [19]. Negative refraction index was calcu-
lated from the transmission and reflection data [20]. Finally, negative refection on the wedge experi-
ment was demonstrated by FDTD simulations [21].

Negative refraction allows the fabrication of a flat lens [10]. Maybe the most challenging property
of the left-handed medium is its ability to enhance the evanescent modes [22]. Therefore a flat lens,
constructed from left-handed material with E ¼ m ¼ �1 could in principle work as perfect lens [22] in
the sense that it can reconstruct an object without any diffraction error.

The existence of the perfect lens seems to be in contradiction with fundamental physical laws, as
was discussed in a series of papers [14, 23, 24]. Nevertheless, more detailed physical considerations
not only showed that the construction of ‘‘almost perfect” lens is indeed possible, but brought some
more insight into this phenomena [25–32].

All the experiments that showed left-handed behavior were performed in the microwave regime. It
is of interest to examine if it will be possible to observe left-handed behavior at the optical or the far-
infrared regime. Using the metallic structures needed in the microwave experiments might not be
possible to fabricate them in such small length scales. It was therefore proposed that photonic crystals
might have some frequency region, which will show left-handed behavior [33–39]. Notomi [33] stu-
died light propagation in strongly modulated two dimensional (2D) photonic crystals. Such a photonic
crystal (PC) behaves as a material having an effective refractive index neff controllable by the band
structure. In these PC structures the permittivity is periodically modulated in space and is positive.
The permeability is equal to one. Negative neff for a frequency range was found. The existence of
negative neff was demonstrated [34, 36] by a finite difference time domain (FDTD) simulation. Nega-
tive refraction on the interface of a 3D PC structure has been experimentally observed by Kosaka
et al. [38]. Very recently negative refraction and superlensing has been experimentally observed [39]
in 2D photonic crystals. Similar unusual light propagation was observed [40] in 1D and 2D diffraction
gratings.

As Veselago also discussed in his pioneering paper, the permittivity and the permeability of the left-
handed material must depend on the frequency of the EM field, otherwise the energy density [41]

U ¼ 1
2p

ð
dw

@ðwE0Þ
@w

jEj2 þ @ðwm0Þ
@w

jHj2
� �

ð3Þ

would be negative for negative E0 and m0 (real part of the permittivity and permeability). Then, accord-
ing to Kramers–Kronig relations, the imaginary part of the permittivity (E00) and of the permeability
(m00) are non-zero in the LH materials. Transmission losses are therefore unavoidable in any LH struc-
ture. Theoretical estimation of losses is rather difficult problem, and led even to the conclusion that
LH materials are not transparent [17]. Fortunately, recent experiments [13, 42] confirmed the more
optimistic theoretical expectation [43], that the losses in the LH structures might be as small as in
conventional RH materials.

In this paper we present typical structures of the left-handed materials (Sect. 2), discuss a numerical
method of simulation of the propagation of EM waves based on the transfer matrix (Sect. 3), and
present some recent results obtained by this method in Sect. 4. The method of calculation of the
refractive index is presented and applied to the LH structure. An unambiguous proof of the negative
refraction index is given in Sect. 5. Finally, in the Section 6 we discuss some new directions of the
development of both theory and experiments.
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2 Structure

LHM materials are by definition composites, whose properties are not determined by the fundamental
physical properties of their constituents but by the shape and distribution of specific patterns included
in them. The route of the construction of the of LH structure consists from three steps:

Firstly, the split ring resonators (SRR) (see Fig. 1 for the structure of SRR) was predicted to exhibit
the resonant magnetic response to the EM wave, polarized with H parallel to the axis of the SRR.
Then, the periodic array of SRR is characterized [1] by the effective magnetic permeability

meffðf Þ ¼ 1� Fn2

n2 � n2m þ ing
: ð4Þ

In (4), nm is the resonance frequency which depends on the structure of the SRR (Fig. 1) as
ð2pnmÞ2 ¼ 3Lxc2light=½p ln ð2c=dÞr3�. F is the filling factor of the SRR within one unit cell and g is the
damping factor 2pg ¼ 2Lxq=r, where q is the resistivity of the metal.

Formula (4) assures that the real part of meff is negative at an interval Dn around the resonance
frequency. If an array of SRR is combined with a medium with negative real part of the permittivity,
the resulting structure would possess negative effective refraction index in the resonance frequency
interval Dn [11]. The best candidate for the negative permittivity medium is a regular lattice of thin
metallic wires, which acts as a high pass filter for the EM wave polarized with E parallel to the wires.
Such an array exhibits negative effective permittivity

EeffðnÞ ¼ 1�
n2p

n2 þ ing
: ð5Þ

[2, 4, 6] with the plasma frequency n2p ¼ c2light=ð2pa2 lnða=rÞÞ [2]. Sarychev and Shalaev derived an-
other expression for the plasma frequency, n2p ¼ c2light=ð2pa2½ln ða=

ffiffiffi
2

p
rÞ þ p=2� 3� [6]. Apart from

tiny differences in both formulas, the two theories are equivalent [7] and predict that effective permit-
tivity is negative for n < np.

By combining both the above structures, a left-handed structure can be created. This was done for
the first time in the experiments of Smith et al. [8]. Left-handed material is a periodic structure. A
typical unit cell of the left-handed structure is shown in Fig. 1. Each unit cell contains a metallic wire
and one split ring resonator (SRR), deposited on the dielectric board.
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Fig. 1 (online colour at: www.interscience.wiley.com) Left: Structure of the split ring resonator (SRR).
The SRR consists of two splitted metallic ‘‘rings”. The SRR is characterized by the size w, width of the
rings d, and two gaps: g and c. The external magnetic field induces an electric current in both rings [1].
The shape of the SRR (square or circular) is not crucial for the existence of the magnetic resonance. Right:
Structure of the unit cell of the left-handed material. Each unit cell contains the split ring resonator located
on the dielectric board, and one wire. Left-handed structure is created by regular lattices of unit cells. The
EM wave propagates along the z direction. Periodic boundary conditions are considered in the x and the y
direction, which assures the periodic distribution of the EM field.



Figure 2 shows the transmission of the EM waves through the left-handed structure discussed
above. The transmission through the array of the SRR is close to unity for all the frequencies outside
the resonance interval (8.5–11 GHz in this particular case) and decreases to –120 dB in this interval,
because meff is negative (Eq. (4)). The transmission of the array of metallic wires is very small for all
frequencies below the plasma frequency (which is �20 GHz in this case), because Eeff is negative
(Eq. (5)). The structure created by the combination of an array of SRR and wires exhibits high trans-
mission T � 1 within the resonance interval, where both Eeff and meff are negative. For frequencies
outside the resonance interval, the product meffEeff is negative. The transmission decays with the sys-
tem length, and is only � �120 dB in the example of Fig. 2. Experimental analysis of the transmis-
sion of all the three structures was performed by Smith et al. [8].

We want to obtain a resonance frequency nm � 10 GHz. This requires the size of the unit cell to be
3–5 mm. The wavelength of the EM wave with frequency � 10 GHz is �4 cm, and exceeds by a
factor of 10 the structural details of the left-handed materials. We can therefore consider the left-
handed material as macroscopically homogeneous. This is the main difference between the left-handed
structures and the ‘‘classical” photonic band gap (PBG) materials, in which the wave length is compar-
able with the lattice period.

It is important to note that the structure described in Fig. 1 is strongly anisotropic. For frequencies
inside the resonance interval, the effective Eeff and meff are negative only for EM field with H k x and
E k y. The left-handed properties appear only when a properly polarized EM wave propagates in the z
direction. The structure in Fig. 1 is therefore effectively one-dimensional. Any EM waves, attempting
to propagate either along the x or along the y direction would decay exponentially since the corre-
sponding product Eeffmeff is negative. This structure is therefore not suitable for the realization of the
perfect lens. To test the negative Snell’s law experimentally, a wedge type of experiment must be
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Fig. 2 (online colour at: www.interscience.wiley.com)
Transmission of the EM wave, polarized with E k y and
H k x, through a periodic array of split ring resonators,
wires, and of both SRR and wires.

Fig. 3 (online colour at: www.interscience.wiley.com) Refraction
experiment on the Left-handed material [12, 42]. The incident EM
wave propagates from the left and hits perpendicularly the left
boundary of the wedge. The angle of refraction is measured when
the EM wave passes the right boundary of the inspected material
and propagates for some time in the air. Two possible directions of
the propagation of the refracted wave are shown: the right refraction
for the conventional right-handed (RH) material, and left refraction
for the left-handed material. This experimental design enables to use
also strongly anisotropic one-dimensional LH samples, since the an-
gle of refraction is measured outside the sample.



considered [12] (Fig. 3) in which the angle of refraction is measured outside, the left-handed medium
(in air) [12, 13].

Two dimensional structures have also been constructed. For instance, the anisotropy in the x� z
plane is removed if each unit cell contains two SRR located in two perpendicular planes [9, 12]. No
three dimensional structures have been experimentally prepared yet.

It is also worth mentioning that some other one dimensional structures were prepared, in which the
wires were deposited on the same side of the dielectric board with the SRRs. The wires could be
located either on the opposite side of the dielectric board, as it was done in [9, 12, 42], or put next to
the SRRs on the same side of board [44]. More complicated one-dimensional structure was suggested
by Ziolkowski [45]. Recently, cut wires were used instead of continuous wires [46].

3 Numerical simulation

Various numerical algorithms were used to simulate the propagation of EM waves through the LH
structure. We concentrate on the transfer matrix algorithm, developed in a series of papers by Pendry
and co-workers [47]. The transfer matrix algorithm enables us to calculate the transmission, reflection,
and absorption as a function of frequency [48, 49]. Others use commercial software: either Microwave
studio [13, 42, 50] or MAFIA [8], to estimate the position of the resonance frequency interval. Time-
dependent analysis, using various forms of FDTD algorithms are also used [13, 19, 45, 51].

In the transfer matrix algorithm, we attach in the z direction, along which EM wave propagates,
two semi-infinite ideal leads with E ¼ 1 and m ¼ 1. The length of the system varies from 1 to 300 unit
cells. Periodic boundary conditions along the x and y directions are used. This makes the system
effectively infinite in the transverse directions, and enables us to restrict the simulated structure to
only one unit cell in the transverse directions.

A typical size of the unit cell is 3.66 mm. Because of numerical problems, we are not able to treat
very thin metallic structures. While in experiments the thickness of the SRRs is usually 17 mm, the
thickness used in the numerical calculations is determined by the minimal mesh discretization, which
is usually � 0:33 mm. In spite of this constrain, the numerical data are in qualitative agreement with
the experimental results. This indicates that the thickness of the SRR is not a crutial parameter, unless
it decreases below or is comparable with the skin depth d. As d � 0:7 mm at GHz frequencies of
interest, we are far from this limitation.

4 Transmission

As discussed in Section 2 the polarization of the EM waves is crucial for the observation of the LH
properties. The electric field E must be parallel to the wires, and the magnetic field H must be paral-
lel to the axis of the SRRs. In the numerical simulations, we treat simultaneously both polarizations,
E k x as well as E k y. Due to the non-homogeneity of the structure, these polarizations are not sepa-
rated: there is always non-zero transmission txy from the x to y polarized wave. As we will see later,
this effect is responsible for some unexpected phenomena. At present, we keep in mind that they must
be included into the formula for absorption

Ax ¼ 1� jtxxj2 � jtxyj2 � jrxxj2 � jrxyj2 ð6Þ

and in the equivalent relation for Ay.
Figure 4 shows typical data for the transmission in the resonance frequency region. A resonance

frequency interval, in which the transmission increases by many orders of magnitude is clearly visible.
Of course, high transmission does not guarantee negative refraction index. The sign of n must be
obtained by other methods, which will be described in Sect. 5.

In contrast to the original experimental data, numerical data show very high transmission, indicating
that LH structures could be as transparent as the ‘‘classical” right-handed ones. As an example, we
show in right Fig. 4 the transmission as the function of the system length for the frequency inside the
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resonance frequency interval. We see that the transmission is quite good also for samples of the length
of 300 unit cells. Refractive index is n ¼ �0:378þ 0:008i. This is surprising, because due to the
dispersion, high losses are expected. More detailed numerical analysis of the transmission losses was
given in [43, 53].

Figure 4 shows also that outside the resonance interval the transmission never decreases below a
certain limit. Due to the non-homogeneity of the structure there is a non-zero probability tyx that the
EM wave, polarized with Eky, is converted into the polarization E k x. The total transmission tyy
consists therefore not only from the “unperturbed” contribution tð0Þyy , but also from additional terms,
which describe the conversion of the y-polarized wave into x-polarized and back to y-polarized:

tyyð0; LÞ ¼ tð0Þyy ð0; LÞ þ
P
z;z0

txyð0; zÞ txxðz; z0Þ tyxðz0LÞ þ . . . : ð7Þ

tð0Þyy ð0; LÞ decreases exponentially with the system length L, while the second term, which represents
the conversion of the y-polarized wave into x-polarized wave and back, remains system-length inde-
pendent, because txxðz; z0Þ � 1 for any distance jz� z0j.

5 Effective index of refraction

As was discussed above, the structural inhomogeneities of the LH materials are approximately ten
times smaller than the wavelength of the EM wave. It is therefore possible, within a first approxima-
tion, to consider the slab of the LH material as an homogeneous material. Then we can and use the
textbook formulas for the transmission t eikL and reflection r for the homogeneous slab:

t�1 ¼ cos ðnkLÞ � i
2

zþ 1
z

� �
sin ðnkLÞ

� �
ð8Þ

and

r
t
¼ � i

2
z� 1

z

� �
sin ðnkLÞ : ð9Þ

Here, z and n are the effective impedance and the refraction index, respectively, k is the wave vector
of the incident EM wave in vacuum, and L is the length of the LH slab. We only consider perpendicu-
lar incident waves, so that only the z components of the effective parameters are important. To simpli-
fy the calculations, we neglect also the conversion of the polarized EM wave into another polariza-
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mission t for the frequency n ¼ 11 GHz.



tion, discussed in the Section 4. More accurate analysis should treat both t and r as 2� 2 matrices.
Here we assume that the off-diagonal elements of these matrices are negligible:

jtxyj � jtyyj : ð10Þ

In the present analysis, we use the numerical data for the transmission and the reflection obtained by
the transfer matrix simulation. The expressions for the transmission and the reflection can be inverted
as

z ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ rÞ2 � t2

ð1� rÞ2 � t2

s
ð11Þ

cos ðnkLÞ ¼ X ¼ 1
2t

1� r2 þ t2
� �

: ð12Þ

The sign of z is determined by the condition

z0 > 0 ð13Þ

which determines z unambiguously. The obtained data for z enables us also to check the assumption
of the homogeneity of the system. We indeed found that z is independent of the length of the system
L.

The second relation, (12), is more difficult to invert since cos�1 is not an unambiguous function.
One set of physically acceptable solutions is determined by the requirement

n00 > 0 ð14Þ

which assures that the material is passive. The real part of the refraction index, n0, however, suffers
from the unambiguity of 2pm=ðkLÞ (m is an integer). To avoid this ambiguity, data for various system
length L were used. As n characterizes the material property of the system, it is L independent. Using
also the requirement that n should be a continuous function of the frequency, the proper solution of
(12) was found and the resonance frequency interval, in which n0 is negative was identified [20]. Here,
we use another method for the calculation of n and z: Equation (12) can be written as

e�n00kL cos ðn0kLÞ þ i sin ðn0kLÞ½ � ¼ Y ¼ X �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X2

p
: ð15Þ

Relation (15) enables us to find unambiguously both the real and the imaginary part of the refraction
index from the linear fit of n00kL and n0kL vs. the system length L. The requirement (14) determines
the sign in the r.h.s. of Eq. (15), because jY j < 1. Then, the linear fit of n0kL vs. L determines unam-
biguously the real part of n0.

Figure 5 shows the L dependence of n0kL for three frequencies inside the resonance interval. The
numerical data proves that the real part of the refraction index, n0, is indeed negative in the resonance
interval. For comparison, we present also n0kL vs. L for the x polarized wave outside the resonance
interval. As expected, the slope is positive and gives that n0 ¼ 1:13, which is close to unity.

Besides the sign of the real part of the refraction index, the value of the imaginary part of n, n00 is
important, since it determines the absorption of the EM waves inside the sample. Fortunately, n00 is
very small, it is only of the order of 10�2 inside the resonance interval. As is shown in Fig. 4, quite
good transmission was numerically obtained also for samples with length of 300 unit cells (which
corresponds to a length of the system 1.1 m). This result is very encouraging and indicates that left-
handed structures could be as transparent as right-handed materials.

While the above method works very well in the right side of the resonance interval, we had prob-
lems to estimate n in the neighborhood of the left border of the resonance region, where n0 is very
large and negative. This is, however, not surprising since in this frequency region the wavelength of
the propagating wave becomes comparable with the size of the unit cell, so that the effective param-
eters have no physical meaning. We also have serious problems to recover proper values of n outside
the resonance interval. This is due to the conversion of the x polarized wave into a y polarized. As a
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result, we do not have enough numerical data for obtaining the L-dependence of the transmission t. The
condition (10) is not any more fulfilled, and the present theory must be generalized as discussed above.

6 Further development

We reviewed some recent experiments and numerical simulations on the transmission of the electromag-
netic waves through left handed structures. For completeness, we note that recently, Notomi [33] has
studied the light propagation in strongly modulated two dimensional photonic crystals (PC). In these PC
structures the permittivity is periodically modulated in space and is positive. The permeability is equal to
unity. Such PC behaves as a material having an effective refractive index controllable by the band struc-
ture. For a certain frequency range it was found by FDTD simulations [33, 35, 36] that neff is negative. It is
important to examine if left-handed behavior can be observed in photonic crystals at optical frequencies.

Negative refraction on the interface of a three dimensional PC structure has been observed experi-
mentally by Kosaka et al. [38] and a negative refractive index associated to that was reported. Large
beam steaming has been observed in [38], that authors called ‘‘the superprism phenomena”. Similar
unusual light propagation has been observed in one-dimensional and two dimensional refraction grat-
ings. Finally, a theoretical work [34] has predicted a negative refraction index in photonic crystals.

Studies of the left handed structures open a series of new challenging problems for theoreticians as
well as for experimentalists. The complete understanding of the properties of left-handed structures
requires the reevaluation of some ‘‘well known” facts of the electromagnetic theory. There is no
formulas with negative permeability in classical textbooks of electromagnetism [41, 52]. Application
of the existing formulas to the analysis of left handed structures may lead to some strange results. The
theory of EM field has to be reexamined assuming negative m and E. We need to understand comple-
tely the relationship between the real and the imaginary parts of the permittivity and the permeability.
Kramers–Kronig relations should be valid, but nobody have verified them yet in the case of the left-
handed structures. The main problem is that we need Eeff and meff in the entire range of frequencies,
which is difficult to obtain numerically. Then, due to the anisotropy of the structure as well as the
nonzero transmission txy in Eq. (8), Kramers–Kronig relations should be generalized. We do not
believe that today’s numerical data enables their verifications with sufficient accuracy.

Both in the photonic crystals and LHM literature there is a lot of confusion about what is the correct
definitions of the phase and group refractive index and what is their relations to negative refraction. In
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additions, it is instructive to see how the LH behavior is related with the sign of the phase and group
refractive indices for the PC system. The conditions of obtaining LH behavior in PC were recently exam-
ined in [35]. It was demonstrated that the existence of negative refraction is neither a prerequisite nor
guarantees a negative effective refraction index and so LH behavior. Contrary, LH behavior can be seen
only if phase refractive index nphase is negative. Once nphase is negative, the product S � k is also negative,
and the vectors k, E and H form a left handed set, as discussed in the Introduction.

The following problems are currently discussed in literature. The negative Snell’s law requires the
understanding in more detail of the relationship between the Poynting vector, the group velocity, and
the phase velocity. We believe, that there is no controversial in this phenomena [16, 18]. We need also
more general relations for the energy of the EM field [54] which incorporates all the allowed signs of
the real and imaginary parts of the permittivity and permeability.

We believe that further analysis, of what happens when EM wave crosses the boundary of the left-
handed and right-handed systems, will bring more understanding of the negative refraction as well as
perfect lensing. Numerical FDTD simulations of the transmission of the EM wave through the inter-
face of the positive and negative refraction index [36] showed that the wave is trapped temporarily at
the interface and after a long time the wave front moves eventually in the direction of negative refrac-
tion. This is clearly seen in Fig. 6, where we plot the amplitude of the magnetic field of an incident
Gaussian beam that undergoes reflection and refraction for a very long time. Computer simulations of
the transmission through LH wedge [21] also confirm that EM wave spends some time on the bound-
ary before the formation of the left-handed wave front. Formation of surface waves [27, 28] can
explain ‘‘perfect lensing” without violating causality. Recent experimental development [39] indicate
that perfect (although not absolutely perfect) lensing might be possible. We need also to understand
some peculiar properties of the left handed structures due to its anisotropy [55] and bi-anisotropy [56].
Anisotropy of real left-handed materials inspires further development of super-focusing [29].
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